charlatan makes
realistic looking fake data, inspired from and borrowing some code from
Python’s faker
Why would you want to make fake data that looks real? Here’s some possible use cases to give you a sense for what you can do with this package:
See the Creating realistic data vignette for a few realistic examples.
See the Contributing to charlatan vignette.
R6 objects that
a user can initialize and then call methods on. These contain all the
logic that the below interfaces use.ch_*() that wrap low level interfaces, and are meant to be
easier to use and provide an easy way to make many instances of a
thing.ch_generate() - generate a data.frame with fake data,
choosing which columns to include from the data types provided in
charlatanfraudster() - single interface to all fake data
methods, - returns vectors/lists of data - this function wraps the
ch_*() functions described aboveStable version from CRAN
Development version from Github
… for all fake data operations
Here we create 3 jobs, for different locales:
ch_job(locale = "en_US", n = 3)
#> [1] "Risk manager"
#> [2] "Emergency planning/management officer"
#> [3] "Commercial art gallery manager"
ch_job(locale = "fr_FR", n = 3)
#> [1] "Responsable du service après-vente" "Directeur de restaurant"
#> [3] "Gérant de restauration collective"
ch_job(locale = "hr_HR", n = 3)
#> [1] "Diplomirani knjižničar"
#> [2] "Viši muzejski tehničar"
#> [3] "Viši inspektor cestovnog prometa i cesta"
ch_job(locale = "uk_UA", n = 3)
#> [1] "Стиліст" "Конструктор" "Лікар"
ch_job(locale = "zh_TW", n = 3)
#> [1] "不動產/商場開發人員" "行政人員" "精密拋光技術人員"For colors:
ch_generate()
#> # A tibble: 10 × 3
#> name job phone_number
#> <chr> <chr> <chr>
#> 1 Lempi Morar Conservation officer, nature 901.398.258…
#> 2 Baldwin Schneider-Cummerata Accountant, chartered management (802)526-85…
#> 3 Ruby Pollich Chief Financial Officer +85(5)25531…
#> 4 Silver Stamm Network engineer 643-027-967…
#> 5 Dr. Marlo Kuhlman Scientist, product/process developm… 324-469-6283
#> 6 Mrs. Teresa Ernser MD Public affairs consultant 313.740.023…
#> 7 Daniele Bailey Marine scientist 1-573-696-3…
#> 8 Candace McClure Textile designer 1-670-218-3…
#> 9 Tyshawn Trantow-Schumm Child psychotherapist 810.463.5630
#> 10 Esequiel Padberg Ceramics designer 098.242.555…ch_generate("job", "phone_number", n = 30)
#> # A tibble: 30 × 2
#> job phone_number
#> <chr> <chr>
#> 1 Records manager 125-947-8871x5833
#> 2 Tax adviser +35(6)1365779713
#> 3 Librarian, academic 874-768-7853x87816
#> 4 Industrial/product designer 114.197.8108
#> 5 Human resources officer (193)310-2551x567
#> 6 Dancer 048-796-0464
#> 7 Editor, magazine features (087)019-1625x1863
#> 8 Engineering geologist (082)036-1361x47910
#> 9 Geologist, wellsite 1-253-000-9561x151
#> 10 Teacher, English as a foreign language 956.006.6518x3735
#> # ℹ 20 more rowsWe can create locale specific versions of:
Examples:
ch_job(10)
#> [1] "Energy engineer"
#> [2] "Actuary"
#> [3] "Occupational therapist"
#> [4] "Historic buildings inspector/conservation officer"
#> [5] "Administrator, arts"
#> [6] "Social research officer, government"
#> [7] "Astronomer"
#> [8] "Land/geomatics surveyor"
#> [9] "Manufacturing systems engineer"
#> [10] "Nurse, adult"Some data types are not localized (arguably the files and user_agents, are mostly universal too).
ch_credit_card_provider()
#> [1] "Diners Club / Carte Blanche"
ch_credit_card_provider(n = 4)
#> [1] "Discover" "VISA 16 digit" "JCB 16 digit" "Maestro"ch_credit_card_number()
#> [1] "3337582498471586794"
ch_credit_card_number(n = 10)
#> [1] "4694143045887717" "4013890363602" "3725806836864638"
#> [4] "52334334178405882" "3528798045780155850" "3039519999360456"
#> [7] "3158750375363623347" "3015534826157151" "3420989419673231"
#> [10] "589384554499065"charlatan makes it very easy to generate fake data with
missing entries. First, you need to run
MissingDataProvider() and then make an appropriate
make_missing() call specifying the data type to be
generated. This method picks a random number (N) of slots
in the input make_missing vector and then picks
N random positions that will be replaced with NA matching
the input class.
Real data is messy, right? charlatan makes it easy to
create messy data. This is still in the early stages so is not available
across most data types and languages, but we’re working on it.
For example, create messy names:
ch_name(50, messy = TRUE)
#> [1] "Destiney Dicki" "Mrs. Freddie Pouros DDS"
#> [3] "Ms. Jada Lesch" "Inga Dach"
#> [5] "Keyshawn Schaefer" "Ferdinand Bergstrom"
#> [7] "Justen Simonis" "Ms. Doloris Stroman DVM"
#> [9] "Mrs. Ermine Heidenreich" "Marion Corwin"
#> [11] "Jalen Grimes" "Mr. Sullivan Hammes IV"
#> [13] "Adrien Vandervort-Dickens" "Dr. Sharif Kunde"
#> [15] "Marlena Reichert PhD" "Mr. Brandan Oberbrunner"
#> [17] "Lloyd Adams III" "Randy Ziemann"
#> [19] "Gina Sanford" "Cornell Funk"
#> [21] "Yadiel Collier" "Kamryn Johnson"
#> [23] "Tyesha Schmeler" "Ernie Hegmann-Graham"
#> [25] "Zackery Runolfsdottir" "Cleveland Predovic"
#> [27] "Melvyn Hickle" "Larry Nienow IV"
#> [29] "Vilma Rutherford" "Wiliam Ziemann-Fadel"
#> [31] "Mrs. Kathy Halvorson" "Mirtie Harvey-Shanahan"
#> [33] "Eliezer Pfeffer" "Dr. Shep Buckridge"
#> [35] "Kyree Kutch" "Ms. Delpha Grant"
#> [37] "Ms. Icie Crooks" "Loney Jenkins-Lindgren"
#> [39] "Shania Donnelly DVM" "Dr. Patric Veum"
#> [41] "Amirah Rippin DVM" "Randle Hilpert"
#> [43] "Soren Dare" "Roderic Walter"
#> [45] "Farah Daugherty MD" "Marva Crooks"
#> [47] "Ryland Ledner" "Girtha Harvey DDS"
#> [49] "Staci Spencer" "Mr. Olan Bernhard"Right now only suffixes and prefixes for names in en_US
locale are supported. Notice above some variation in prefixes and
suffixes.