
Package: chopin (via r-universe)
November 20, 2024

Title Computation of Spatial Data by Hierarchical and Objective
Partitioning of Inputs for Parallel Processing

Version 0.9.0

Description Geospatial data computation is parallelized by grid,
hierarchy, or raster files. Based on future and mirai parallel
backends, terra and sf functions as well as convenience
functions in the package can be distributed over multiple
threads. The simplest way of parallelizing generic geospatial
computation is to start from `par_pad_*` functions to
`par_grid`, `par_hierarchy`, or `par_multirasters` functions.
Virtually any functions accepting classes in terra or sf
packages can be used in the three parallelization functions. A
common raster-vector overlay operation is provided as a
function `extract_at`, which uses exactextractr, with options
for kernel weights for summarizing raster values at vector
geometries. Other convenience functions for vector-vector
operations including simple areal interpolation
(`summarize_aw`) and summation of exponentially decaying
weights (`summarize_sedc`) are also provided.

License MIT + file LICENSE

URL https://docs.ropensci.org/chopin,

https://github.com/ropensci/chopin

BugReports https://github.com/ropensci/chopin/issues

Depends R (>= 4.1)

SystemRequirements netcdf

Encoding UTF-8

LazyData true

LazyDataCompression xz

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

1

https://docs.ropensci.org/chopin
https://github.com/ropensci/chopin
https://github.com/ropensci/chopin/issues

2 extract_at

Imports anticlust, cli, dplyr (>= 1.1.0), exactextractr (>= 0.8.2),
future, future.apply, igraph, methods, rlang, sf (>= 1.0-10),
stars (>= 0.6-0), terra (>= 1.7-18), mirai (>= 1.3.0),
collapse, lifecycle

Suggests covr, devtools, targets, DiagrammeR, future.mirai, knitr,
rmarkdown, spatstat.random, testthat (>= 3.0.0), units, withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/pak/sysreqs cmake libgdal-dev gdal-bin libgeos-dev libglpk-dev
libxml2-dev libnetcdf-dev libssl-dev libproj-dev libsqlite3-dev
libudunits2-dev xz-utils

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/chopin

RemoteRef main

RemoteSha 42799ee62c2acf8a4e45b7e0c63af8dc6e1fb894

Contents
extract_at . 2
ncpoints . 6
par_convert_f . 7
par_grid . 8
par_grid_mirai . 10
par_hierarchy . 12
par_hierarchy_mirai . 14
par_merge_grid . 17
par_multirasters . 18
par_multirasters_mirai . 20
par_pad_balanced . 21
par_pad_grid . 23
par_split_list . 25
prediction_grid . 26
summarize_aw . 27
summarize_sedc . 29

Index 32

extract_at Extract raster values with point buffers or polygons

Description

Extract raster values with point buffers or polygons

extract_at 3

Usage

extract_at(x, y, ...)

S4 method for signature 'SpatRaster,sf'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,
out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,
bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

S4 method for signature 'character,character'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,
out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,
bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

S4 method for signature 'SpatRaster,character'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,
out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,

4 extract_at

bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

S4 method for signature 'SpatRaster,SpatVector'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,
out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,
bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

S4 method for signature 'character,sf'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,
out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,
bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

S4 method for signature 'character,SpatVector'
extract_at(
x = NULL,
y = NULL,
id = NULL,
func = "mean",
extent = NULL,
radius = NULL,

extract_at 5

out_class = "sf",
kernel = NULL,
kernel_func = stats::weighted.mean,
bandwidth = NULL,
max_cells = 3e+07,
.standalone = TRUE,
...

)

Arguments

x SpatRaster object or file path(s) with extensions that are GDAL-compatible.
When multiple file paths are used, the rasters must have the same extent and
resolution.

y sf/SpatVector object or file path.

... Placeholder.

id character(1). Unique identifier of each point.

func function taking one numeric vector argument. Default is "mean" for all sup-
ported signatures in arguments x and y.

extent numeric(4) or SpatExtent. Extent of clipping vector. It only works with points
of character(1) file path.

radius numeric(1). Buffer radius.

out_class character(1). Output class. One of sf or terra.

kernel character(1). Name of a kernel function One of "uniform", "triweight",
"quartic", and "epanechnikov"

kernel_func function. Kernel function to apply to the extracted values. Default is stats::weighted.mean()

bandwidth numeric(1). Kernel bandwidth.

max_cells integer(1). Maximum number of cells in memory.

.standalone logical(1). Default is TRUE, which means that the function will be executed in
a standalone mode. When using this function in par_* functions, set this to
FALSE.

Details

Inputs are preprocessed in different ways depending on the class.

• Vector inputs in y: sf is preferred, thus character and SpatVector inputs will be converted
to sf object. If radius is not NULL, sf::st_buffer is used to generate circular buffers as
subsequent raster-vector overlay is done with exactextractr::exact_extract.

• Raster input in x: SpatRaster is preferred. If the input is not SpatRaster, it will be converted
to SpatRaster object.

Value

A data.frame object with summarized raster values with respect to the mode (polygon or buffer) and
the function.

6 ncpoints

Author(s)

Insang Song <geoissong@gmail.com>

See Also

Other Macros for calculation: kernelfunction(), summarize_aw(), summarize_sedc()

Examples

ncpath <- system.file("gpkg/nc.gpkg", package = "sf")
rastpath <- system.file("extdata/nc_srtm15_otm.tif", package = "chopin")

nc <- terra::vect(ncpath)
nc <- terra::project(nc, "EPSG:5070")
rrast <- terra::rast(nc, nrow = 100, ncol = 220)
ncr <- terra::rasterize(nc, rrast)
terra::values(rrast) <- rgamma(2.2e4, 4, 2)
rpnt <- terra::spatSample(rrast, 16L, as.points = TRUE)
rpnt$pid <- sprintf("ID-%02d", seq(1, 16))

extract_at(rrast, rpnt, "pid", "mean", radius = 1000)
extract_at(rrast, nc, "NAME", "mean")
extract_at(rrast, ncpath, "NAME", "mean")
extract_at(

rrast, ncpath, "NAME", "mean",
kernel = "epanechnikov",
bandwidth = 1e5

)
extract_at(

rastpath, ncpath, "NAME", "mean",
kernel = "epanechnikov",
bandwidth = 1e5

)

ncpoints Mildly clustered points in North Carolina, United States

Description

Mildly clustered points in North Carolina, United States

Usage

ncpoints

Format

A data frame with 2,304 rows and two variables:

X X coordinate
Y Y coordinate

par_convert_f 7

Note

Coordinates are in EPSG:5070 (Conus Albers Equal Area)

Source

sf package data nc

See Also

Other Dataset: prediction_grid

Examples

data("ncpoints", package = "chopin")

par_convert_f Map arguments to the desired names

Description

This function maps the arguments of a target function to the desired names. Users will use a named
list name_match to standardize the argument names, at least x and y, to the target function. This
function is particularly useful to parallelize functions for spatial data outside sf and terra packages
that do not have arguments named x and/or y. par_* functions could detect such functions by
wrapping nonstandardized functions to parallelize the computation.

Usage

par_convert_f(fun, arg_map)

Arguments

fun A function to map arguments.

arg_map named character vector. c(x = "a", y = "i") will map a and i in fun to x and
y, respectively.

Value

Function with arguments mapped.

Note

arg_map should be defined carefully according to the characteristics of fun. After mapping x and
y, the resultant function will fail if there remain arguments without default. It is recommended to
map all the arguments in fun to avoid any side effects.

8 par_grid

Examples

cov_map <- arg_mapping <- c(x = "a", y = "b", z = "c", w = "d")
Example original function
f1 <- function(a, b, c, d) {

return(a + b + c + d)
}
Mapping of new argument names to original argument names
arg_mapping <- c(x = "a", y = "b", z = "c", w = "d")
f2 <- par_convert_f(f1, arg_mapping)

demonstrate f2 with the mapped arguments
f2(x = 1, y = 2, z = -1, w = 10)

par_grid Parallelize spatial computation over the computational grids

Description

future::multicore, future::multisession, future::cluster future.mirai::mirai_multisession in future::plan
will parallelize the work in each grid. For details of the terminology in future package, refer to
future::plan. This function assumes that users have one raster file and a sizable and spatially
distributed target locations. Each thread will process the nearest integer of $|N_g| / |N_t|$ grids
where $|N_g|$ denotes the number of grids and $|N_t|$ denotes the number of threads.

Usage

par_grid(grids, fun_dist, ..., pad_y = FALSE, .debug = FALSE)

Arguments

grids List of two sf/SpatVector objects. Computational grids. It takes a strict assump-
tion that the grid input is an output of ‘par_pad_grid“.

fun_dist sf, terra or chopin functions. This function should have x and y arguments.

... Arguments passed to the argument fun_dist.

pad_y logical(1). Whether to filter y with the padded grid. Should be TRUE when
x is where the values are calculated. Default is FALSE. In the reverse case,
like terra::extent or exactextractr::exact_extract, the raster (x) extent
should be set with the padded grid.

.debug logical(1). Default is FALSE. Otherwise, if a unit computation fails, the error
message and the CGRIDID value where the error occurred will be included in the
output.

Value

a data.frame object with computation results. For entries of the results, consult the documentation
of the function put in fun_dist argument.

par_grid 9

Note

In dynamic dots (...), fun_dist arguments should include x and y where sf/terra class objects
or file paths are accepted. Virtually any sf/terra functions that accept two arguments can be put
in fun_dist, but please be advised that some spatial operations do not necessarily give the exact
result from what would have been done single-thread. For example, distance calculated through
this function may return the lower value than actual because the computational region was reduced.
This would be the case especially where the target features are spatially sparsely distributed.

Author(s)

Insang Song <geoissong@gmail.com>

See Also

future::multisession, future::multicore, future::cluster, future.mirai::mirai_multisession,
future::plan, par_convert_f

Other Parallelization: par_cut_coords(), par_grid_mirai(), par_hierarchy(), par_hierarchy_mirai(),
par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(), par_pad_balanced(),
par_pad_grid(), par_split_list()

Examples

library(sf)
library(future)
library(future.mirai)
plan(mirai_multisession, workers = 2)
ncpath <- system.file("shape/nc.shp", package = "sf")
ncpoly <- sf::st_read(ncpath)
sf object
ncpnts <-

readRDS(
system.file("extdata/nc_random_point.rds", package = "chopin")

)
file path
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")

nccompreg <-
chopin::par_pad_grid(
input = ncpnts,
mode = "grid",
nx = 4L,
ny = 2L,
padding = 5e3L

)
res <-

par_grid(
grids = nccompreg,
fun_dist = extract_at,
x = ncelev,
y = ncpnts,

10 par_grid_mirai

qsegs = 90L,
radius = 5e3L,
id = "pid"

)

par_grid_mirai Parallelize spatial computation over the computational grids

Description

mirai::daemons will set the parallel backend then mirai::mirai_map will parallelize the work in
each grid. For details of the terminology in mirai package, refer to mirai::mirai. This function
assumes that users have one raster file and a sizable and spatially distributed target locations. Each
thread will process the nearest integer of $|N_g| / |N_t|$ grids where $|N_g|$ denotes the number of
grids and $|N_t|$ denotes the number of threads.

Usage

par_grid_mirai(grids, fun_dist, ..., pad_y = FALSE, .debug = TRUE)

Arguments

grids List of two sf/SpatVector objects. Computational grids. It takes a strict assump-
tion that the grid input is an output of ‘par_pad_grid“.

fun_dist sf, terra or chopin functions. This function should have x and y arguments.

... Arguments passed to the argument fun_dist.

pad_y logical(1). Whether to filter y with the padded grid. Should be TRUE when
x is where the values are calculated. Default is FALSE. In the reverse case,
like terra::extent or exactextractr::exact_extract, the raster (x) extent
should be set with the padded grid.

.debug logical(1). Default is FALSE. Otherwise, if a unit computation fails, the error
message and the CGRIDID value where the error occurred will be included in the
output.

Value

a data.frame object with computation results. For entries of the results, consult the documentation
of the function put in fun_dist argument.

Note

In dynamic dots (...), fun_dist arguments should include x and y where sf/terra class objects
or file paths are accepted. Virtually any sf/terra functions that accept two arguments can be put
in fun_dist, but please be advised that some spatial operations do not necessarily give the exact
result from what would have been done single-thread. For example, distance calculated through
this function may return the lower value than actual because the computational region was reduced.
This would be the case especially where the target features are spatially sparsely distributed.

par_grid_mirai 11

Author(s)

Insang Song <geoissong@gmail.com>

See Also

mirai::daemons, mirai::mirai_map, par_convert_f

Other Parallelization: par_cut_coords(), par_grid(), par_hierarchy(), par_hierarchy_mirai(),
par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(), par_pad_balanced(),
par_pad_grid(), par_split_list()

Examples

library(sf)
library(mirai)
daemons(4, dispatcher = "process")
ncpath <- system.file("shape/nc.shp", package = "sf")
ncpoly <- sf::st_read(ncpath)
sf object
ncpnts <-

readRDS(
system.file("extdata/nc_random_point.rds", package = "chopin")

)
file path
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")

nccompreg <-
chopin::par_pad_grid(
input = ncpnts,
mode = "grid",
nx = 4L,
ny = 2L,
padding = 5e3L

)
res <-

par_grid_mirai(
grids = nccompreg,
fun_dist = extract_at,
x = ncelev,
y = ncpnts,
qsegs = 90L,
radius = 5e3L,
id = "pid"

)
mirai::daemons(0L)

12 par_hierarchy

par_hierarchy Parallelize spatial computation by hierarchy in input data

Description

"Hierarchy" refers to a system, which divides the entire study region into multiple subregions. It
is oftentimes reflected in an area code system (e.g., FIPS for US Census geographies and Nomencla-
ture of Territorial Units for Statistics (NUTS), etc.). future::multisession, future::multicore,
future::cluster, future.mirai::mirai_multisession in future::plan will parallelize the
work by splitting lower level features into several higher level feature group. For details of the
terminology in future package, please refer to future::plan documentation. Each thread will
process the number of lower level features in each higher level feature. Please be advised that
accessing the same file simultaneously with multiple processes may result in errors.

Usage

par_hierarchy(
regions,
regions_id = NULL,
length_left = NULL,
pad = 0,
pad_y = FALSE,
fun_dist,
...,
.debug = FALSE

)

Arguments

regions sf/SpatVector object. Computational regions. Only polygons are accepted.

regions_id character(1). Name of unique ID field in regions. The regions will be split by
the common level value.

length_left integer(1). Length of the first characters of the regions_id values. Default
is NULL, which will not manipulate the regions_id values. If the number of
characters is not consistent (for example, numerics), the function will alert the
user.

pad numeric(1). Padding distance for each subregion defined by regions_id or
trimmed regions_id values. in linear unit of coordinate system. Default is 0,
which means each subregion is used as is. If the value is greater than 0, the
subregion will be buffered by the value. The padding distance will be applied to
x (pad_y = FALSE) or y (pad_y = TRUE) to filter the data.

pad_y logical(1). Whether to filter y with the padded grid. Should be TRUE when x
is where the values are calculated. Default is FALSE. In the reverse case, like
terra::extent or exactextractr::exact_extract, the raster (x) should be
scoped with the padded grid.

par_hierarchy 13

fun_dist sf, terra, or chopin functions. This function should have x and y arguments.

... Arguments passed to the argument fun_dist.

.debug logical(1). Default is FALSE If a unit computation fails, the error message and
the regions_id value where the error occurred will be included in the output.

Details

In dynamic dots (...), fun_dist arguments should include x and y where sf/terra class objects or
file paths are accepted. Hierarchy is interpreted by the regions_id argument first. regions_id is
assumed to be a field name in the x or y argument object. It is expected that regions represents the
higher level boundaries and x or y in fun_dist is the lower level boundaries. However, if that is not
the case, with trim argument, the function will generate the higher level codes from regions_id by
extracting left-t Whether x or y is searched is determined by pad_y value. pad_y = TRUE will make
the function attempt to find regions_id in x, whereas pad_y = FALSE will look for regions_id at
y. If the regions_id doesn’t exist in x or y, the function will utilize spatial relationship (intersects)
to filter the data. Note that dispatching computation by subregions based on the spatial relationship
may lead to a slight discrepancy in the result. For example, if the higher and lower level features
are not perfectly aligned, there may be some features that are not included or duplicated in the
subregions. The function will alert the user if spatial relation- ship is used to filter the data.

Value

a data.frame object with computation results. For entries of the results, consult the function used in
fun_dist argument.

Note

Virtually any sf/terra functions that accept two arguments can be put in fun_dist, but please be
advised that some spatial operations do not necessarily give the exact result from what would have
been done with single thread. For example, distance calculated through this function may return
the lower value than actual because the computational region was reduced. This would be the case
especially where the target features are spatially sparsely distributed.

Author(s)

Insang Song <geoissong@gmail.com>

See Also

future::multisession, future::multicore, future::cluster, future.mirai::mirai_multisession,
future::plan, par_convert_f

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy_mirai(),
par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(), par_pad_balanced(),
par_pad_grid(), par_split_list()

14 par_hierarchy_mirai

Examples

library(terra)
library(sf)
library(future)
library(future.mirai)
options(sf_use_s2 = FALSE)
future::plan(future.mirai::mirai_multisession, workers = 2)

ncpath <- system.file("extdata/nc_hierarchy.gpkg", package = "chopin")
nccnty <- sf::st_read(ncpath, layer = "county")
nctrct <- sf::st_read(ncpath, layer = "tracts")
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")

ncsamp <-
sf::st_sample(
nccnty,
size = 1e4L

)
sfc to sf
ncsamp <- sf::st_as_sf(ncsamp)
assign ID
ncsamp$kid <- sprintf("K-%05d", seq_len(nrow(ncsamp)))
res <-

par_hierarchy(
regions = nccnty,
regions_id = "GEOID",
fun_dist = extract_at,
y = nctrct,
x = ncelev,
id = "GEOID",
func = "mean"

)

par_hierarchy_mirai Parallelize spatial computation by hierarchy in input data

Description

"Hierarchy" refers to a system, which divides the entire study region into multiple subregions. It is
usually reflected in an area code system (e.g., FIPS for US Census geographies and Nomenclature
of Territorial Units for Statistics (NUTS), etc.). mirai::daemons will set the parallel backend then
mirai::mirai_map will the work by splitting lower level features into several higher level feature
group. For details of the terminology in mirai package, refer to mirai::mirai. Each thread will
process the number of lower level features in each higher level feature. Please be advised that
accessing the same file simultaneously with multiple processes may result in errors.

par_hierarchy_mirai 15

Usage

par_hierarchy_mirai(
regions,
regions_id = NULL,
length_left = NULL,
pad = 0,
pad_y = FALSE,
fun_dist,
...,
.debug = TRUE

)

Arguments

regions sf/SpatVector object. Computational regions. Only polygons are accepted.

regions_id character(1). Name of unique ID field in regions. The regions will be split by
the common level value.

length_left integer(1). Length of the first characters of the regions_id values. Default
is NULL, which will not manipulate the regions_id values. If the number of
characters is not consistent (for example, numerics), the function will alert the
user.

pad numeric(1). Padding distance for each subregion defined by regions_id or
trimmed regions_id values. in linear unit of coordinate system. Default is 0,
which means each subregion is used as is. If the value is greater than 0, the
subregion will be buffered by the value. The padding distance will be applied to
x (pad_y = FALSE) or y (pad_y = TRUE) to filter the data.

pad_y logical(1). Whether to filter y with the padded grid. Should be TRUE when x
is where the values are calculated. Default is FALSE. In the reverse case, like
terra::extent or exactextractr::exact_extract, the raster (x) should be
scoped with the padded grid.

fun_dist sf, terra, or chopin functions. This function should have x and y arguments.

... Arguments passed to the argument fun_dist.

.debug logical(1). Default is FALSE If a unit computation fails, the error message and
the regions_id value where the error occurred will be included in the output.

Details

In dynamic dots (...), fun_dist arguments should include x and y where sf/terra class objects or
file paths are accepted. Hierarchy is interpreted by the regions_id argument first. regions_id is
assumed to be a field name in the x or y argument object. It is expected that regions represents the
higher level boundaries and x or y in fun_dist is the lower level boundaries. However, if that is not
the case, with trim argument, the function will generate the higher level codes from regions_id
by extracting the code from the left end (controlled by length_left). Whether x or y is searched
is determined by pad_y value. pad_y = TRUE will make the function attempt to find regions_id in
x, whereas pad_y = FALSE will look for regions_id at y. If the regions_id doesn’t exist in x or
y, the function will utilize spatial relationship (intersects) to filter the data. Note that dispatching

16 par_hierarchy_mirai

computation by subregions based on the spatial relationship may lead to a slight discrepancy in the
result. For example, if the higher and lower level features are not perfectly aligned, there may be
some features that are not included or duplicated in the subregions. The function will alert the user
if spatial relation- ship is used to filter the data.

Value

a data.frame object with computation results. For entries of the results, consult the function used in
fun_dist argument.

Note

Virtually any sf/terra functions that accept two arguments can be put in fun_dist, but please be
advised that some spatial operations do not necessarily give the exact result from what would have
been done with single thread. For example, distance calculated through this function may return
the lower value than actual because the computational region was reduced. This would be the case
especially where the target features are spatially sparsely distributed.

Author(s)

Insang Song <geoissong@gmail.com>

See Also

mirai::mirai_map, mirai::daemons, par_convert_f

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(), par_pad_balanced(),
par_pad_grid(), par_split_list()

Examples

library(terra)
library(sf)
library(mirai)
options(sf_use_s2 = FALSE)
mirai::daemons(4, dispatcher = "process")

ncpath <- system.file("extdata/nc_hierarchy.gpkg", package = "chopin")
nccnty <- sf::st_read(ncpath, layer = "county")
nctrct <- sf::st_read(ncpath, layer = "tracts")
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")

ncsamp <-
sf::st_sample(
nccnty,
size = 1e4L

)
sfc to sf
ncsamp <- sf::st_as_sf(ncsamp)
assign ID

par_merge_grid 17

ncsamp$kid <- sprintf("K-%05d", seq_len(nrow(ncsamp)))
res <-

par_hierarchy_mirai(
regions = nccnty,
regions_id = "GEOID",
fun_dist = extract_at,
y = nctrct,
x = ncelev,
id = "GEOID",
func = "mean",
.debug = TRUE

)
mirai::daemons(0L)

par_merge_grid Merge adjacent grid polygons with given rules

Description

Merge boundary-sharing (in "Rook" contiguity) grids with fewer target features than the thresh-
old. This function strongly assumes that the input is returned from the par_make_grid, which has
"CGRIDID" as the unique id field.

Usage

par_merge_grid(
points_in = NULL,
grid_in = NULL,
grid_min_features = NULL,
merge_max = 4L

)

Arguments

points_in sf or SpatVector object. Target points of computation.
grid_in sf or SpatVector object. The grid generated by the internal function par_make_grid.
grid_min_features

integer(1). Threshold to merge adjacent grids.
merge_max integer(1). Maximum number of grids to merge per merged set. Default is 4.

For example, if the number of grids to merge is 20 and merge_max is 10, the
function will split the 20 grids into two sets of 10 grids.

Value

A sf or SpatVector object of computation grids.

Note

This function will not work properly if grid_in has more than one million grids.

18 par_multirasters

Author(s)

Insang Song

References

• Polsby DD, Popper FJ. (1991). The Third Criterion: Compactness as a Procedural Safeguard
Against Partisan Gerrymandering. Yale Law & Policy Review, 9(2), 301–353.

See Also

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_multirasters(), par_multirasters_mirai(),
par_pad_balanced(), par_pad_grid(), par_split_list()

Examples

library(sf)
library(igraph)
library(dplyr)
library(spatstat.random)
options(sf_use_s2 = FALSE)

dg <- sf::st_as_sfc(st_bbox(c(xmin = 0, ymin = 0, xmax = 8e5, ymax = 6e5)))
sf::st_crs(dg) <- 5070
dgs <- sf::st_as_sf(st_make_grid(dg, n = c(20, 15)))
dgs$CGRIDID <- seq(1, nrow(dgs))

dg_sample <- sf::st_sample(dg, kappa = 5e-9, mu = 15,
scale = 15000, type = "Thomas")
sf::st_crs(dg_sample) <- sf::st_crs(dg)
dg_merged <- par_merge_grid(sf::st_as_sf(dg_sample), dgs, 100)

plot(sf::st_geometry(dg_merged))

par_multirasters Parallelize spatial computation over multiple raster files

Description

Large raster files usually exceed the memory capacity in size. This function can be helpful to process
heterogenous raster files with homogeneous summary functions. Heterogenous raster files refer to
rasters with different spatial extents and resolutions. Cropping a large raster into a small subset even
consumes a lot of memory and adds processing time. This function leverages terra SpatRaster
to distribute computation jobs over multiple threads. It is assumed that users have multiple large
raster files in their disk, then each file path is assigned to a thread. Each thread will directly read
raster values from the disk using C++ pointers that operate in terra functions. For use, it is strongly
recommended to use vector data with small and confined spatial extent for computation to avoid
out-of-memory error. y argument in fun_dist will be used as-is. That means no preprocessing or
subsetting will be applied. Please be aware of the spatial extent and size of the inputs.

https://hdl.handle.net/20.500.13051/17448
https://hdl.handle.net/20.500.13051/17448

par_multirasters 19

Usage

par_multirasters(filenames, fun_dist, ..., .debug = FALSE)

Arguments

filenames character. A vector or list of full file paths of raster files. n is the total number
of raster files.

fun_dist terra or chopin functions that accept SpatRaster object in an argument. In
particular, x and y arguments should be present and x should be a SpatRaster.

... Arguments passed to the argument fun_dist.

.debug logical(1). Default is FALSE. If TRUE and a unit computation fails, the error
message and the file path where the error occurred will be included in the output.

Value

a data.frame object with computation results. For entries of the results, consult the function used in
fun_dist argument.

Author(s)

Insang Song <geoissong@gmail.com>

See Also

future::multisession, future::multicore, future::cluster, future.mirai::mirai_multisession,
future::plan, par_convert_f

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_merge_grid(), par_multirasters_mirai(),
par_pad_balanced(), par_pad_grid(), par_split_list()

Examples

library(terra)
library(sf)
library(future)
library(future.mirai)
sf::sf_use_s2(FALSE)
future::plan(future.mirai::mirai_multisession, workers = 2)

ncpath <- system.file("extdata/nc_hierarchy.gpkg", package = "chopin")
nccnty <- sf::st_read(ncpath, layer = "county")
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")
ncelevras <- terra::rast(ncelev)

tdir <- tempdir(check = TRUE)
terra::writeRaster(ncelevras, file.path(tdir, "test1.tif"), overwrite = TRUE)
terra::writeRaster(ncelevras, file.path(tdir, "test2.tif"), overwrite = TRUE)
testfiles <- list.files(tdir, pattern = "tif$", full.names = TRUE)

20 par_multirasters_mirai

res <- par_multirasters(
filenames = testfiles,
fun_dist = extract_at,
x = ncelev,
y = nccnty,
id = "GEOID",
func = "mean"

)

par_multirasters_mirai

Parallelize spatial computation over multiple raster files

Description

Large raster files usually exceed the memory capacity in size. This function can be helpful to process
heterogenous raster files with homogeneous summary functions. Heterogenous raster files refer to
rasters with different spatial extents and resolutions. Cropping a large raster into a small subset even
consumes a lot of memory and adds processing time. This function leverages terra SpatRaster
to distribute computation jobs over multiple threads. It is assumed that users have multiple large
raster files in their disk, then each file path is assigned to a thread. Each thread will directly read
raster values from the disk using C++ pointers that operate in terra functions. For use, it is strongly
recommended to use vector data with small and confined spatial extent for computation to avoid
out-of-memory error. y argument in fun_dist will be used as-is. That means no preprocessing or
subsetting will be applied. Please be aware of the spatial extent and size of the inputs.

Usage

par_multirasters_mirai(filenames, fun_dist, ..., .debug = TRUE)

Arguments

filenames character. A vector or list of full file paths of raster files. n is the total number
of raster files.

fun_dist terra or chopin functions that accept SpatRaster object in an argument. In
particular, x and y arguments should be present and x should be a SpatRaster.

... Arguments passed to the argument fun_dist.

.debug logical(1). Default is FALSE. If TRUE and a unit computation fails, the error
message and the file path where the error occurred will be included in the output.

Value

a data.frame object with computation results. For entries of the results, consult the function used in
fun_dist argument.

par_pad_balanced 21

Author(s)

Insang Song <geoissong@gmail.com>

See Also

mirai::mirai, mirai::mirai_map, mirai::daemons, par_convert_f

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_merge_grid(), par_multirasters(), par_pad_balanced(),
par_pad_grid(), par_split_list()

Examples

library(terra)
library(sf)
library(mirai)
sf::sf_use_s2(FALSE)
mirai::daemons(4, dispatcher = "process")

ncpath <- system.file("extdata/nc_hierarchy.gpkg", package = "chopin")
nccnty <- sf::st_read(ncpath, layer = "county")
ncelev <-

system.file("extdata/nc_srtm15_otm.tif", package = "chopin")
ncelevras <- terra::rast(ncelev)

tdir <- tempdir(check = TRUE)
terra::writeRaster(ncelevras, file.path(tdir, "test1.tif"), overwrite = TRUE)
terra::writeRaster(ncelevras, file.path(tdir, "test2.tif"), overwrite = TRUE)
testfiles <- list.files(tdir, pattern = "tif$", full.names = TRUE)

res <- par_multirasters_mirai(
filenames = testfiles,
fun_dist = extract_at,
x = ncelev,
y = nccnty,
id = "GEOID",
func = "mean"

)
mirai::daemons(0L)

par_pad_balanced Extension of par_make_balanced for padded grids

Description

This function utilizes anticlust::balanced_clustering() to split the input into equal size sub-
groups then transform the data to be compatible with the output of par_pad_grid, for which a set
of padded grids of the extent of input point subsets (as recorded in the field named "CGRIDID") is
generated out of input points.

22 par_pad_balanced

Usage

par_pad_balanced(points_in = NULL, ngroups, padding)

Arguments

points_in sf or SpatVector object. Point geometries. Default is NULL.

ngroups integer(1). The number of groups.

padding numeric(1). A extrusion factor to make buffer to clip actual datasets. Depending
on the length unit of the CRS of input.

Value

A list of two,

• original: exhaustive and non-overlapping grid polygons in the class of input

• padded: a square buffer of each polygon in original. Used for computation.

Author(s)

Insang Song

See Also

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(),
par_pad_grid(), par_split_list()

Examples

library(terra)
library(sf)
options(sf_use_s2 = FALSE)

ncpath <- system.file("gpkg/nc.gpkg", package = "sf")
nc <- terra::vect(ncpath)
nc_rp <- terra::spatSample(nc, 1000)

nc_gr <- par_pad_balanced(nc_rp, 10L, 1000)
nc_gr

par_pad_grid 23

par_pad_grid Get a set of computational grids

Description

Using input points, the bounding box is split to the predefined numbers of columns and rows. Each
grid will be buffered by the radius.

Usage

par_pad_grid(
input,
mode = c("grid", "grid_advanced", "grid_quantile"),
nx = 10L,
ny = 10L,
grid_min_features = 30L,
padding = NULL,
unit = NULL,
quantiles = NULL,
merge_max = NULL,
return_wkt = FALSE,
...

)

Arguments

input sf or Spat* object.

mode character(1). Mode of region construction. One of

• "grid" (simple grid regardless of the number of features in each grid)
• "grid_advanced" (merging adjacent grids with smaller number of features

than grid_min_features). The argument grid_min_features should be
specified.

• "grid_quantile" (x and y quantiles): an argument quantiles should be
specified.

nx integer(1). The number of grids along x-axis.

ny integer(1). The number of grids along y-axis.
grid_min_features

integer(1). A threshold to merging adjacent grids

padding numeric(1). A extrusion factor to make buffer to clip actual datasets. Depending
on the length unit of the CRS of input.

unit character(1). The length unit for padding (optional). units::set_units is used
for padding when sf object is used. See link for the list of acceptable unit forms.

quantiles numeric. Quantiles for grid_quantile mode.

merge_max integer(1). Maximum number of grids to merge per merged set.

https://CRAN.R-project.org/package=units/vignettes/measurement_units_in_R.html

24 par_pad_grid

return_wkt logical(1). Return WKT format. When TRUE, the return value will be a list of
two WKT strings.

... arguments passed to the internal function

Value

A list of two,

• original: exhaustive (filling completely) and non-overlapping grid polygons in the class of
input

• padded: a square buffer of each polygon in original. Used for computation.

Author(s)

Insang Song

See Also

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(),
par_pad_balanced(), par_split_list()

Examples

data
library(sf)
options(sf_use_s2 = FALSE)
ncpath <- system.file("shape/nc.shp", package = "sf")
nc <- read_sf(ncpath)
nc <- st_transform(nc, "EPSG:5070")

run: nx and ny should strictly be integers
nc_comp_region <-

par_pad_grid(
nc,
mode = "grid",
nx = 4L, ny = 2L,
padding = 10000)

par(mfcol = c(1, 2))
plot(nc_comp_region$original$geometry)
plot(nc_comp_region$padded$geometry)

nc_comp_region_wkt <-
par_pad_grid(
nc,
mode = "grid",
nx = 4L, ny = 2L,
padding = 10000,
return_wkt = TRUE)

nc_comp_region_wkt$original
nc_comp_region_wkt$padded

par_split_list 25

par_split_list Split grid list to a nested list of row-wise data frames

Description

Split grid list to a nested list of row-wise data frames

Usage

par_split_list(gridlist)

Arguments

gridlist list. Output of par_pad_grid or par_pad_balanced

Details

If the input is a data frame, the function will return a list of two data frames: original and padded.
If the input is a WKT vector, the function will return a list of two WKT strings: original and
padded.

Value

A nested list of data frames or WKT strings.

See Also

Other Parallelization: par_cut_coords(), par_grid(), par_grid_mirai(), par_hierarchy(),
par_hierarchy_mirai(), par_make_grid(), par_merge_grid(), par_multirasters(), par_multirasters_mirai(),
par_pad_balanced(), par_pad_grid()

Examples

library(sf)
library(terra)
options(sf_use_s2 = FALSE)

ncpath <- system.file("shape/nc.shp", package = "sf")
nc <- read_sf(ncpath)
nc <- st_transform(nc, "EPSG:5070")
nc_comp_region <-

par_pad_grid(
nc,
mode = "grid",
nx = 4L, ny = 2L,
padding = 10000)

par_split_list(nc_comp_region)

26 prediction_grid

prediction_grid Regular grid points in the mainland United States at 1km spatial res-
olution

Description

Regular grid points in the mainland United States at 1km spatial resolution

Usage

prediction_grid

Format

A data frame with 8,092,995 rows and three variables:

site_id Unique point identifier. Arbitrarily generated.

lon Longitude

lat Latitude

Note

Coordinates are in EPSG:5070 (Conus Albers Equal Area)

Source

Mainland United States polygon was obtained from the US Census Bureau.

See Also

Other Dataset: ncpoints

Examples

data("prediction_grid", package = "chopin")

summarize_aw 27

summarize_aw Area weighted summary using two polygon objects

Description

When x and y are different classes, poly_weight will be converted to the class of x.

Usage

summarize_aw(x, y, ...)

S4 method for signature 'SpatVector,SpatVector'
summarize_aw(
x,
y,
target_fields = NULL,
id_x = "ID",
fun = stats::weighted.mean,
extent = NULL,
...

)

S4 method for signature 'character,character'
summarize_aw(
x,
y,
target_fields = NULL,
id_x = "ID",
fun = stats::weighted.mean,
out_class = "terra",
extent = NULL,
...

)

S4 method for signature 'sf,sf'
summarize_aw(
x,
y,
target_fields = NULL,
id_x = "ID",
fun = NULL,
extent = NULL,
...

)

28 summarize_aw

Arguments

x A sf/SpatVector object or file path of polygons detectable with GDAL driver at
weighted means will be calculated.

y A sf/SpatVector object or file path of polygons from which weighted means will
be calculated.

... Additional arguments depending on class of x and y.

target_fields character. Field names to calculate area-weighted.

id_x character(1). The unique identifier of each polygon in x. Default is "ID".

fun function(1)/character(1). The function to calculate the weighted summary. De-
fault is stats::weighted.mean. The function must have a w argument. If
both x and y are sf, it should be one of c("sum", "mean"). It will determine
extensive argument in sf::st_interpolate_aw.

extent numeric(4) or SpatExtent object. Extent of clipping x. It only works with x of
character(1) file path. See terra::ext for more details. Coordinate systems
should match.

out_class character(1). "sf" or "terra". Output class.

Value

A data.frame with all numeric fields of area-weighted means.

Note

x and y classes should match. If x and y are characters, they will be read as sf objects.

Author(s)

Insang Song <geoissong@gmail.com>

See Also

Other Macros for calculation: extract_at(), kernelfunction(), summarize_sedc()

Examples

package
library(sf)
options(sf_use_s2 = FALSE)
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"))
nc <- sf::st_transform(nc, 5070)
pp <- sf::st_sample(nc, size = 300)
pp <- sf::st_as_sf(pp)
pp[["id"]] <- seq(1, nrow(pp))
sf::st_crs(pp) <- "EPSG:5070"
ppb <- sf::st_buffer(pp, nQuadSegs=180, dist = units::set_units(20, "km"))

system.time(
ppb_nc_aw <-

summarize_sedc 29

summarize_aw(
ppb, nc, c("BIR74", "BIR79"),
"id", fun = "sum"

)
)
summary(ppb_nc_aw)

terra examples
library(terra)
ncpath <- system.file("gpkg/nc.gpkg", package = "sf")
elev <- system.file("ex/elev.tif", package = "terra")
nc <- terra::vect(ncpath)
elev <- terra::rast(elev)
pp <- terra::spatSample(nc, size = 300)
pp <- terra::project(pp, crs(elev))
pp <- terra::as.points(pp)
pp[["id"]] <- seq(1, nrow(pp))
ppb <- terra::buffer(pp, 20000)

system.time(
ppb_nc_aw <-
summarize_aw(

ppb, nc, c("BIR74", "BIR79"), "id",
fun = sum

)
)
summary(ppb_nc_aw)

summarize_sedc Calculate Sum of Exponentially Decaying Contributions (SEDC) co-
variates

Description

Calculate Sum of Exponentially Decaying Contributions (SEDC) covariates

Usage

summarize_sedc(
point_from = NULL,
point_to = NULL,
id = NULL,
sedc_bandwidth = NULL,
threshold = NULL,
target_fields = NULL,
extent_from = NULL,
extent_to = NULL,
...

)

30 summarize_sedc

Arguments

point_from SpatVector object. Locations where the sum of SEDCs are calculated.

point_to SpatVector object. Locations where each SEDC is calculated.

id character(1). Name of the unique id field in point_to.

sedc_bandwidth numeric(1). Distance at which the source concentration is reduced to exp(-3)
(approximately -95 %)

threshold numeric(1). For computational efficiency, the nearest points in threshold will be
selected. 2 * sedc_bandwidth is applied if this value remains NULL.

target_fields character. Field names to calculate SEDC.

extent_from numeric(4) or SpatExtent. Extent of clipping point_from. It only works with
point_from of character(1) file path. See terra::ext for more details. Coor-
dinate systems should match.

extent_to numeric(4) or SpatExtent. Extent of clipping point_to.

... Placeholder.

Details

The SEDC is specialized in vector to vector summary of covariates with exponential decay. Decay-
ing slope will be defined by sedc_bandwidth, where the concentration of the source is reduced to
$\exp(-3)$ (approximately 5 \ of the attenuating concentration with the distance from the sources.
It can be thought of as a fixed bandwidth kernel weighted sum of covariates, which encapsulates
three steps:

• Calculate the distance between each source and target points.

• Calculate the weight of each source point with the exponential decay.

• Summarize the weighted covariates.

Value

data.frame object with input field names with a suffix "_sedc" where the sums of EDC are stored.
Additional attributes are attached for the EDC information.

• attr(result, "sedc_bandwidth"): the bandwidth where concentration reduces to approxi-
mately five percent

• attr(result, "sedc_threshold"): the threshold distance at which emission source points
are excluded beyond that

Note

Distance calculation is done with terra functions internally. Thus, the function internally converts
sf objects in point_* arguments to terra. Please note that any NA values in the input will be
ignored in SEDC calculation.

Author(s)

Insang Song

summarize_sedc 31

References

• Messier KP, Akita Y, Serre ML. (2012). Integrating Address Geocoding, Land Use Regres-
sion, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene. En-
vironmental Science & Technology 46(5), 2772-2780.

• Wiesner C. (n.d.). Euclidean Sum of Exponentially Decaying Contributions Tutorial.

See Also

Other Macros for calculation: extract_at(), kernelfunction(), summarize_aw()

Examples

library(terra)
library(sf)
set.seed(101)
ncpath <- system.file("gpkg/nc.gpkg", package = "sf")
nc <- terra::vect(ncpath)
nc <- terra::project(nc, "EPSG:5070")
pnt_from <- terra::centroids(nc, inside = TRUE)
pnt_from <- pnt_from[, "NAME"]
pnt_to <- terra::spatSample(nc, 100L)
pnt_to$pid <- seq(1, 100)
pnt_to <- pnt_to[, "pid"]
pnt_to$val1 <- rgamma(100L, 1, 0.05)
pnt_to$val2 <- rgamma(100L, 2, 1)

vals <- c("val1", "val2")
summarize_sedc(pnt_from, pnt_to, "NAME", 1e5, 2e5, vals)

Index

∗ Dataset
ncpoints, 6
prediction_grid, 26

∗ Macros for calculation
extract_at, 2
summarize_aw, 27
summarize_sedc, 29

∗ Parallelization
par_grid, 8
par_grid_mirai, 10
par_hierarchy, 12
par_hierarchy_mirai, 14
par_merge_grid, 17
par_multirasters, 18
par_multirasters_mirai, 20
par_pad_balanced, 21
par_pad_grid, 23
par_split_list, 25

∗ datasets
ncpoints, 6
prediction_grid, 26

anticlust::balanced_clustering(), 21

extract_at, 2, 28, 31
extract_at,character,character-method

(extract_at), 2
extract_at,character,sf-method

(extract_at), 2
extract_at,character,SpatVector-method

(extract_at), 2
extract_at,SpatRaster,character-method

(extract_at), 2
extract_at,SpatRaster,sf-method

(extract_at), 2
extract_at,SpatRaster,SpatVector-method

(extract_at), 2

future.mirai::mirai_multisession, 8, 9,
12, 13, 19

future::cluster, 8, 9, 12, 13, 19
future::multicore, 8, 9, 12, 13, 19
future::multisession, 8, 9, 12, 13, 19
future::plan, 8, 9, 12, 13, 19

kernelfunction, 6, 28, 31

mirai::daemons, 10, 11, 14, 16, 21
mirai::mirai, 10, 14, 21
mirai::mirai_map, 10, 11, 14, 16, 21

ncpoints, 6, 26

par_convert_f, 7, 9, 11, 13, 16, 19, 21
par_cut_coords, 9, 11, 13, 16, 18, 19, 21, 22,

24, 25
par_grid, 8, 11, 13, 16, 18, 19, 21, 22, 24, 25
par_grid_mirai, 9, 10, 13, 16, 18, 19, 21, 22,

24, 25
par_hierarchy, 9, 11, 12, 16, 18, 19, 21, 22,

24, 25
par_hierarchy_mirai, 9, 11, 13, 14, 18, 19,

21, 22, 24, 25
par_make_grid, 9, 11, 13, 16–19, 21, 22, 24,

25
par_merge_grid, 9, 11, 13, 16, 17, 19, 21, 22,

24, 25
par_multirasters, 9, 11, 13, 16, 18, 18, 21,

22, 24, 25
par_multirasters_mirai, 9, 11, 13, 16, 18,

19, 20, 22, 24, 25
par_pad_balanced, 9, 11, 13, 16, 18, 19, 21,

21, 24, 25
par_pad_grid, 9, 11, 13, 16, 18, 19, 21, 22,

23, 25
par_split_list, 9, 11, 13, 16, 18, 19, 21, 22,

24, 25
prediction_grid, 7, 26

sf::st_interpolate_aw, 28
stats::weighted.mean, 28

32

INDEX 33

stats::weighted.mean(), 5
summarize_aw, 6, 27, 31
summarize_aw,character,character-method

(summarize_aw), 27
summarize_aw,sf,sf-method

(summarize_aw), 27
summarize_aw,SpatVector,SpatVector-method

(summarize_aw), 27
summarize_sedc, 6, 28, 29

terra::ext, 28, 30

	extract_at
	ncpoints
	par_convert_f
	par_grid
	par_grid_mirai
	par_hierarchy
	par_hierarchy_mirai
	par_merge_grid
	par_multirasters
	par_multirasters_mirai
	par_pad_balanced
	par_pad_grid
	par_split_list
	prediction_grid
	summarize_aw
	summarize_sedc
	Index

