
Package: clifro (via r-universe)
November 27, 2024

Type Package

Title Easily Download and Visualise Climate Data from CliFlo

Version 3.2-5.9003

Date 2023-03-09

VignetteBuilder knitr

Imports methods, stats, graphics, lubridate, xml2, magrittr, utils,
ggplot2 (>= 2.0.0), scales, RColorBrewer, reshape2, rvest,
httr, stringr

Suggests spelling, knitr, rmarkdown, pander, testthat

Description CliFlo is a web portal to the New Zealand National Climate
Database and provides public access (via subscription) to
around 6,500 various climate stations (see
<https://cliflo.niwa.co.nz/> for more information). Collating
and manipulating data from CliFlo (hence clifro) and importing
into R for further analysis, exploration and visualisation is
now straightforward and coherent. The user is required to have
an internet connection, and a current CliFlo subscription
(free) if data from stations, other than the public Reefton
electronic weather station, is sought.

URL https://docs.ropensci.org/clifro/,

https://github.com/ropensci/clifro

BugReports https://github.com/ropensci/clifro/issues

License GPL-2

Encoding UTF-8

Collate 'dataFrame.R' 'cfStation.R' 'cfData.R' 'cfDataList.R'
'cfData-plotMethods.R' 'cfDatatype.R' 'cfQuery.R' 'cfUser.R'
'findStations.R'

RoxygenNote 7.2.3

X-schema.org-keywords r, opensci, zealand, weather, climate, cliflo,
data, api, windrose, rain, wind, temperature

1

https://cliflo.niwa.co.nz/
https://docs.ropensci.org/clifro/
https://github.com/ropensci/clifro
https://github.com/ropensci/clifro/issues

2 +,cfStation,cfStation-method

X-schema.org-applicationCategory Data Access

X-schema.org-isPartOf ``https://ropensci.org''

Language en-GB

Config/pak/sysreqs libicu-dev libxml2-dev libssl-dev

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/clifro

RemoteRef master

RemoteSha 46c72d399ee3d6069cfffa87a4452f85794bdef9

Contents
+,cfStation,cfStation-method . 2
cfDatatype-class . 3
cfStation-class . 4
cfUser-class . 5
cf_curl_opts . 6
cf_find_station . 7
cf_last_query . 9
cf_query . 10
cf_save_kml . 12
clifro . 14
dimnames,dataFrame-method . 16
plot,cfEarthTemp,missing-method . 16
plot,cfPressure,missing-method . 18
plot,cfRain,missing-method . 19
plot,cfScreenObs,missing-method . 21
plot,cfSunshine,missing-method . 22
plot,cfTemp,missing-method . 24
plot,cfWind,missing-method . 25
plot.cfDataList . 29
summary,cfUser-method . 30
summary,cfWind-method . 30
windrose . 31
[[,dataFrame-method . 33

Index 35

+,cfStation,cfStation-method

Arithmetic Operators for Clifro Objects

Description

This operator allows you to add more datatypes or stations to cfDatatype and cfStation objects
respectively.

cfDatatype-class 3

Usage

S4 method for signature 'cfStation,cfStation'
e1 + e2

S4 method for signature 'cfDatatype,cfDatatype'
e1 + e2

Arguments

e1 a cfDatatype or cfStation object

e2 an object matching the class of e1

cfDatatype-class The Clifro Datatype Object

Description

Create a cfDatatype object by selecting one or more CliFlo datatypes to build the clifro query.

Usage

cf_datatype(
select_1 = NA,
select_2 = NA,
check_box = NA,
combo_box = NA,
graphics = FALSE

)

Arguments

select_1 a numeric vector of first node selections

select_2 a numeric vector of second node selections

check_box a list containing the check box selections

combo_box a numeric vector containing the combo box selection (if applicable)

graphics a logical indicating whether a graphics menu should be used, if available

Details

An object inheriting from the cfDatatype class is created by the constructor function cf_datatype.
The function allows the user to choose datatype(s) interactively (if no arguments are given), or to
create datatypes programmatically if the tree menu nodes are known a priori (see examples). This
function uses the same nodes, check box and combo box options as CliFlo and can be viewed at the
datatype selection page.

https://cliflo.niwa.co.nz/pls/niwp/wgenf.choose_datatype?cat=cat1

4 cfStation-class

Value

cfDatatype object

Note

For the ’public’ user (see examples) only the Reefton Ews station data is available.

Currently clifro does not support datatypes from the special datasets (Ten minute, Tier2, Virtual
Climate, Lysimeter) or upper air measurements from radiosondes and wind radar.

See Also

cf_user to create a clifro user, cf_station to choose the CliFlo stations and vignette("choose-datatype")
for help choosing cfDatatypes.

Examples

Not run:
Select the surface wind datatype manually (unknown tree nodes)
hourly.wind.dt = cf_datatype()
2 --> Datatype: Wind
1 --> Datatype 2: Surface Wind
2 --> Options: Hourly Wind
(2) --> Another option: No
3 --> Units: Knots
hourly.wind.dt

Or select the datatype programatically (using the selections seen above)
hourly.wind.dt = cf_datatype(2, 1, 2, 3)
hourly.wind.dt

End(Not run)

cfStation-class The Clifro Station Object

Description

Create a cfStation object containing station information for one or more CliFlo stations.

Usage

cf_station(...)

Arguments

... comma separated agent numbers

cfUser-class 5

Details

A cfStation object is created by the constructor function cf_station. The unique agent numbers
of the stations are all that is required to create a cfStation object using the cf_station function.
The rest of the station information including the name, network and agent ID, start and end dates,
coordinates, as well as other data is scraped from CliFlo.

This function is used for when the agent numbers are already known. For help creating cfStation
objects when the agent numbers are unknown see the cf_find_station function.

Value

cfStation object

See Also

cf_find_station for creating cfStation objects when the agent numbers are not known and
vignette("cfStation") for working with clifro stations including spatial plotting in R. For saving
cfStation objects as KML files refer to the vignette or cf_save_kml.

Examples

Not run:
Create a cfStation object for the Leigh 1 and 2 Ews stations
leigh.st = cf_station(1339, 1340)
leigh.st

Note, this can also be achieved using the '+' operator
leigh.st = cf_station(1339) + cf_station(1340)
leigh.st

Add another column showing how long the stations have been open for
leigh.df = as(leigh.st, "data.frame")
leigh.df$ndays = with(leigh.df, round(end - start))
leigh.df

Save the stations to the current working directory as a KML to visualise
the station locations
cf_save_kml(leigh.st)

End(Not run)

cfUser-class The Clifro User Object

Description

Create a cfUser object to allow the user to log into CliFlo from R and build their query.

6 cf_curl_opts

Usage

cf_user(username = "public", password = character())

Arguments

username a character string to be used as the cliflo username

password a character string to be used as the cliflo password

Details

An object inheriting from the cfUser class is created by the constructor function cf_user. The
user must have an active subscription to cliflo in order to create a valid object, unless a ’public’ user
is sought. Visit https://cliflo.niwa.co.nz/ for more information and to subscribe to cliflo.

Value

cfUser object

Note

For the ’public’ user (see examples) only the Reefton Ews station data is available.

See Also

valid_cfuser for details on the validation of cfUser and summary,cfUser-method to summarise
user information.

Examples

Not run:
public.cfuser = cf_user(username = "public")
public.cfuser

End(Not run)

cf_curl_opts Store curl options for use within clifro

Description

The cf_curl_opts function stores specific curl options that are used for all the clifro queries.

Usage

cf_curl_opts(..., .opts = list())

https://cliflo.niwa.co.nz/

cf_find_station 7

Arguments

... a name-value pairs that are passed to RCurl curlOptions

.opts a named list or CURLOptions object that are passed to RCurl curlOptions

Examples

Not run:
Specify options for use in all the curl handles created in clifro
cf_curl_opts(.opts = list(proxy = "http://xxxxx.yyyy.govt.nz:8080",

proxyusername = "uid",
proxypassword = "pwd",
ssl.verifypeer = FALSE))

Or alternatively:
cf_curl_opts(proxy = "http://xxxxx.yyyy.govt.nz:8080",

proxyusername = "uid",
proxypassword = "pwd",
ssl.verifypeer = FALSE)

End(Not run)

cf_find_station Search for Clifro Stations

Description

Search for clifro stations based on name, region, location or network number, and return a cfStation
object.

Usage

cf_find_station(
...,
search = c("name", "region", "network", "latlong"),
datatype,
combine = c("all", "any"),
status = c("open", "closed", "all")

)

Arguments

... arguments to pass into the search, these differ depending on search.
search one of name, network, region or latlong indicating the type of search to be

conducted.
datatype cfDatatype object for when the search is based on datatypes.
combine character string "all" or "any" indicating if the stations contain all or any of

the selected datatypes for when the search is based on datatypes.
status character string indicating "open", "closed" or "all" stations be returned by

the search.

8 cf_find_station

Details

The cf_find_station function is a convenience function for finding CliFlo stations in R. It uses
the CliFlo Find Stations page to do the searching, and therefore means that the stations are not
stored within clifro.

If datatype is missing then the search is conducted without any reference to datatypes. If it is
supplied then the search will only return stations that have any or all of the supplied datatypes,
depending on combine. The default behaviour is to search for stations based on pattern matching
the station name and return only the open stations.

If the latlong search type is used the function expects named arguments with names (partially)
matching latitude, longitude and radius. If the arguments are passed in without names they must be
in order of latitude, longitude and radius (see examples).

Value

cfStation object

Note

Since the searching is done by CliFlo there are obvious restrictions. Unfortunately the pattern
matching for station name does not provide functionality for regular expressions, nor does it allow
simultaneous searches although clifro does provide some extra functionality, see the ’OR query
Search’ example below.

See Also

cf_save_kml for saving the resulting stations as a KML file, cf_station for creating cfStation
objects when the agent numbers are known, vignette("choose-station") for a tutorial on find-
ing clifro stations and vignette("cfStation") for working with cfStation objects.

Examples

Not run:
Station Name Search --
Return all open stations with 'island' in the name (pattern match search)
Note this example uses all the defaults

island_st = cf_find_station("island")
island_st

Region Search --
Return all the closed stations from Queenstown (using partial matching)

queenstown.st = cf_find_station("queen", search = "region", status = "closed")
queenstown.st

Long/Lat Search --
Return all open stations within a 10km radius of the Beehive in Wellington
From Wikipedia: latitude 41.2784 S, longitude 174.7767 E

beehive.st = cf_find_station(lat = -41.2784, long = 174.7767, rad = 10,

https://cliflo.niwa.co.nz/pls/niwp/wstn.get_stn_html

cf_last_query 9

search = "latlong")
beehive.st

Network ID Search --
Return all stations that share A42 in their network ID

A42.st = cf_find_station("A42", search = "network", status = "all")
A42.st

Using Datatypes in the Search --
Is the Reefton EWS station open and does it collect daily rain and/or wind
data?

First, create the daily rain and wind datatypes
daily.dt = cf_datatype(c(2, 3), c(1, 1), list(4, 1), c(1, NA))
daily.dt

Then combine into the search. This will only return stations where at least
one datatype is available.
cf_find_station("reefton EWS", datatype = daily.dt) # Yes

OR Query Search --
Return all stations sharing A42 in their network ID *or* all the open
stations within 10km of the Beehive in Wellington (note this is not
currently available as a single query in CliFlo).

cf_find_station("A42", search = "network", status = "all") +
cf_find_station(lat = -41.2784, long = 174.7767, rad = 10,

search = "latlong")

Note these are all ordered by open stations, then again by their end dates

End(Not run)

cf_last_query Retrieve Last Query Result from CliFlo

Description

Retrieve the last query submitted to CliFlo instead of querying the database again and losing sub-
scription rows.

Usage

cf_last_query()

Details

This function is a back up for when the clifro query has been submitted and the data returned but
has not been assigned, or inadvertently deleted. This saves the user resubmitting queries and using
more rows from their subscription than needed.

10 cf_query

Note

Only the data from the last query is saved in clifro.

Examples

Not run:
Query CliFlo for wind at Reefton Ews
cf_query(cf_user(), cf_datatype(2, 1, 1, 1), cf_station(), "2012-01-01 00")

Oops! Forgot to assign it to a variable...
reefton.wind = cf_last_query()
reefton.wind

End(Not run)

cf_query Retrieve Data from the National Climate Database

Description

Query the National Climate Database via CliFlo based on the clifro user and selected datatypes,
stations and dates.

Usage

cf_query(
user,
datatype,
station,
start_date,
end_date = now(tz),
date_format = "ymd_h",
tz = "Pacific/Auckland",
output_tz = c("local", "NZST", "UTC"),
quiet = FALSE

)

Arguments

user a cfUser object.

datatype a cfDatatype object containing the datatypes to be retrieved.

station a cfStation object containing the stations where the datatypes will be retrieved
from.

start_date a character, Date or POSIXt object indicating the start date. If a character
string is supplied the date format should be in the form yyyy-mm-dd-hh unless
date_format is specified.

cf_query 11

end_date same as start_date. Defaults to now.

date_format a character string matching one of "ymd_h", "mdy_h", "ydm_h" or "dmy_h"
representing the lubridate-package date parsing function.

tz the timezone for which the start and end dates refer to. Conversion to Pa-
cific/Auckland time is done automatically through the with_tz function. De-
faults to "Pacific/Auckland".

output_tz the timezone of the output. This can be one of either "local", "UTC", or "NZST".

quiet logical. When TRUE the function evaluates without displaying customary mes-
sages. Messages from CliFlo are still displayed.

Details

The cf_query function is used to combine the clifro user (cfUser), along with the desired datatypes
(cfDatatype) and stations (cfStation). The query is ’built up’ using these objects, along with the
necessary dates. The function then uses all these data to query the National Climate Database via
the CliFlo web portal and returns one of the many cfData objects if one dataframe is returned, or
a cfDataList object if there is more than one dataframe returned from CliFlo. If a cfDataList
is returned, each element in the list is a subclass of the cfData class, see the ’cfData Subclasses’
section.

Value

a cfData or cfDataList object.

CfData Subclasses

There are 8 cfData subclasses that are returned from cf_query depending on the datatype re-
quested. Each of these subclasses have default plot methods for usability and efficiency in explor-
ing and plotting clifro data.

The following table summarises these subclasses and how they are created, see also the examples
on how to automatically create some of these subclasses.

Subclass CliFlo Datatype
cfWind Any ’Wind’ data
cfRain Any ’Precipitation’ data
cfScreen Obs ’Temperature and Humidity’ data measured in a standard screen
cfTemp Maximum and minimum ’Temperature and Humidity’ data
cfEarthTemp ’Temperature and Humidity’ data at a given depth
cfSunshine Any ’Sunshine & Radiation’ data
cfPressure Any ’Pressure’ data
cfOther Any other CliFlo ’Daily and Hourly Observations’

See Also

cf_user, cf_datatype and cf_station for creating the objects needed for a query. See plot,cfDataList,missing-method
for general information on default plotting of cfData and cfDataList objects, and the links within.

12 cf_save_kml

Examples

Not run:
Retrieve daily rain data from Reefton Ews
daily.rain = cf_query(cf_user("public"), cf_datatype(3, 1, 1),

cf_station(), "2012-01-01 00")
daily.rain

returns a cfData object as there is only one datatype
class(daily.rain) # 'cfRain' object - inherits 'cfData'

Look up the help page for cfRain plot methods
?plot.cfRain

Retrieve daily rain and wind data from Reefton Ews

daily.dts = cf_query(cf_user("public"),
cf_datatype(c(2, 3), c(1, 1), list(4, 1), c(1, NA)),
cf_station(), "2012-01-01 00", "2013-01-01 00")

daily.dts

returns a cfDataList object as there is more than one datatype. Each
element of the cfDataList is an object inheriting from the cfData class.
class(daily.dts) # cfDataList
class(daily.dts[1]) # cfRain
class(daily.dts[2]) # cfWind

Create a cfSunshine object (inherits cfData)
Retrieve daily global radiation data at Reefton Ews
rad.data = cf_query(cf_user(), cf_datatype(5,2,1), cf_station(),

"2012-01-01 00")
rad.data

The cf_query function automatically creates the appropriate cfData subclass
class(rad.data)

The advantage of having these subclasses is that it makes plotting very easy
plot(rad.data)
plot(daily.rain)
plot(daily.rain, include_runoff = FALSE)
plot(daily.dts)
plot(daily.dts, 2)

End(Not run)

cf_save_kml Save Clifro Station Information to a KML File

Description

Save cfStation object information to a KML file.

cf_save_kml 13

Usage

cf_save_kml(station, file_name = "my_stations_", file_path = ".")

Arguments

station cfStation object containing one or more stations

file_name file name for the resulting KML file

file_path file path for the resulting KML file

Details

The cf_save_kml function is for cfStation objects to allow for the spatial visualisation of the
selected stations. The resulting KML file is saved and can then be opened by programs like Google
Earth (TM). The resultant KML file has the station names and locations shown with green markers
for open and red markers for closed stations. The agent numbers, network ID’s and date ranges are
contained within the descriptions for each station.

If no file name is specified, unique names are produced in the current R working directory.

Note

The .kml suffix is appended automatically if it isn’t already present in the file_name argument.

See Also

cf_station and vignette("cfStation") for working with stations when the agent numbers are
known, otherwise cf_find_station and codevignette("choose-station") for creating cfStation
objects when the agent numbers are unknown.

Examples

Not run:
A selection of four Auckland region stations down the East Coast to the
upper Waitemata Harbour; Leigh 2 Ews, Warkworth Ews, Tiri Tiri Lighthouse
and Henderson
my.stations = cf_station(17838, 1340, 1401, 12327)
my.stations

Save these stations to a KML file
cf_save_kml(my.stations)

Double click on the file to open with a default program (if available). All
the markers are green, indicating all these stations are open.

Where is the subscription-free Reefton Ews station?
cf_save_kml(cf_station(), file_name = "reeftonEWS")

It's located in the sou'west quadrant of Reefton town, in the upper, western
part of the South Island, NZ.

Find all the open and closed Christchurch stations (using partial matching)

14 clifro

all.chch.st = cf_find_station("christ", status = "all", search = "region")

How many stations in total?
nrow(all.chch.st)

Save all the Christchurch stations
cf_save_kml(all.chch.st, file_name = "all_Chch_stations")

End(Not run)

clifro From CliFlo to clifro: Enhancing The National Climate Database
With R

Description

Import data from New Zealand’s National Climate Database via CliFlo into R for exploring, analy-
sis, plotting, exporting to KML, CSV, or other software.

Details

The clifro package is intended to simplify the process of data extraction, formatting and visuali-
sation from the CliFlo web portal. It requires the user to build a query consisting of 3 main com-
ponents; the user, the datatype(s) and the station(s). These are then combined using the cf_query
function that sends the query to the CliFlo database and returns the results that can easily be plotted
using generic plotting functions.

This package requires the user to already have a current subscription to the National Climate
Database unless a public user is sought, where data is limited to Reefton Ews. Subscription is
free and can obtained from https://cliflo.niwa.co.nz/pls/niwp/wsubform.intro.

See Also

cf_user, cf_datatype, and cf_station for choosing the clifro user, datatypes and stations, re-
spectively.

Examples

Not run:
Create a public user --

public.user = cf_user() # Defaults to "public"
public.user

Select datatypes --

9am Surface wind (m/s)
wind.dt = cf_datatype(2, 1, 4, 1)

Daily Rain

https://cliflo.niwa.co.nz/
https://cliflo.niwa.co.nz/pls/niwp/wsubform.intro

clifro 15

rain.dt = cf_datatype(3, 1, 1)

Daily temperature extremes
temp.dt = cf_datatype(4, 2, 2)

Combine them together
all.dts = wind.dt + rain.dt + temp.dt
all.dts

Select the Reefton Ews station --

reefton.st = cf_station()
reefton.st

Submit the query --

Retrieve all data from ~ six months ago at 9am
reefton.data = cf_query(public.user, all.dts, reefton.st,

paste(as.Date(Sys.time()) - 182, "9"))
reefton.data

Plot the data ---

Plot the 9am surface wind data (first dataframe in the list) ---
reefton.data[1]

all identical - although passed to different methods
plot(reefton.data) #plot,cfDataList,missing-method
plot(reefton.data, 1) #plot,cfDataList,numeric-method
plot(reefton.data[1]) #plot,cfData,missing-method --> plot,cfWind,missing-method

speed_plot(reefton.data)
direction_plot(reefton.data)

Plot the daily rain data (second dataframe in the list) ---
reefton.data[2]

With runoff and soil deficit
plot(reefton.data, 2)

Just plot amount of rain (mm)
plot(reefton.data, 2, include_runoff = FALSE)

Plot the hourly temperature data (third dataframe in the list) ---
plot(reefton.data, 3)

Pass an argument to ggplot2::theme
library(ggplot2) # for element_text()
plot(reefton.data, 3, text = element_text(size = 18))

End(Not run)

16 plot,cfEarthTemp,missing-method

dimnames,dataFrame-method

Dimension Attributes of a Clifro Object

Description

Retrieve the dimensions or dimension names of a dataFrame object.

Usage

S4 method for signature 'dataFrame'
dimnames(x)

S4 method for signature 'dataFrame'
dim(x)

Arguments

x a dataFrame object
Specifically, a dataFrame object is any cfStation or cfData object. These
functions are provided for the user to have (some) familiar data.frame-type
functions available for use on clifro objects.

See Also

cf_query for creating cfData objects, and cf_station for creating cfStation objects.

plot,cfEarthTemp,missing-method

Plot Earth Temperatures

Description

Plot the earth temperature for a given depth (degrees celsius) through time, for each chosen CliFlo
station.

Usage

S4 method for signature 'cfEarthTemp,missing'
plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

plot,cfEarthTemp,missing-method 17

Arguments

x a cfEarthTemp object.

y missing.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfEarthTemp objects.

Refer to theme for more possible arguments to pass to these methods.

Examples

Not run:
Retrieve public earth temperature data for the last 30 days at Reefton Ews
station, at a depth of 10cm

Subtract 30 days from today's date to get the start date
last_month = paste(as.character(Sys.Date() - 30), 0)

reefton_earth = cf_query(cf_user(), cf_datatype(4, 3, 2), cf_station(),
start_date = last_month)

class(reefton_earth) # cfTemp object

Plot the temperature data using the defaults
plot(reefton_earth)

Enlarge the text and add the observations as points
library(ggplot2) # for element_text() and geom_point()
plot(reefton_earth, ggtheme = "bw", text = element_text(size = 16)) +

geom_point(size = 3, shape = 1)

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_earthTemp_plot.png")

End(Not run)

18 plot,cfPressure,missing-method

plot,cfPressure,missing-method

Plot Mean Sea Level Atmospheric Pressure

Description

Plot the MSL atmospheric pressure through time.

Usage

S4 method for signature 'cfPressure,missing'
plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

Arguments

x a cfPressure object.

y missing.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfPressure objects.

Refer to theme for more possible arguments to pass to these methods.

Examples

Not run:
Retrieve public hourly atmospheric pressure data for the last 30 days at
Reefton Ews station

Subtract 30 days from today's date to get the start date
last_month = paste(as.character(Sys.Date() - 30), 0)

plot,cfRain,missing-method 19

reefton_pressure = cf_query(cf_user(), cf_datatype(7, 1, 1), cf_station(),
start_date = last_month)

class(reefton_pressure) # cfPressure object

Plot the atmospheric pressure data using the defaults
plot(reefton_pressure)

Enlarge the text and add the observations as points
library(ggplot2) # for element_text() and geom_point()
plot(reefton_pressure, ggtheme = "bw", text = element_text(size = 16)) +

geom_point(size = 3, shape = 1)

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_pressure_plot.png")

End(Not run)

plot,cfRain,missing-method

Plot Rain Time series

Description

Plot the amount of rainfall (mm) through time, with optional available soil water capacity and runoff
amounts (if applicable).

Usage

S4 method for signature 'cfRain,missing'
plot(
x,
y,
include_runoff = TRUE,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

Arguments

x a cfRain object.

y missing.

include_runoff a logical indicating whether to plot the soil moisture deficit and runoff as well
as the rainfall, if the data is available (default TRUE).

20 plot,cfRain,missing-method

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

Details

When there is a rain event, the amount of runoff, if any, is dependent on how much capacity the
soil has available for more water. If there is no available water capacity left in the soil then more
rain will lead to a runoff event. If include_runoff = TRUE, the available water capacity is plotted
as negative values and the runoff as positive values to signify this negative relationship.

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfRain objects.

Refer to theme for more possible arguments to pass to these methods.

Examples

Not run:
Retrieve public rain data for a month from CliFlo (at Reefton Ews station)
reefton_rain = cf_query(cf_user(), cf_datatype(3, 1, 1), cf_station(),

start_date = "2012-08-01-00",
end_date = "2012-09-01-00")

class(reefton_rain) # cfRain object

Plot the rain data using the defaults
plot(reefton_rain)

Change the ggtheme and enlarge the text
library(ggplot2) # for element_text()
plot(reefton_rain, ggtheme = "bw", text = element_text(size = 16))

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_rain_plot.png")

End(Not run)

plot,cfScreenObs,missing-method 21

plot,cfScreenObs,missing-method

Plot Screen Observations

Description

Plot temperature data from screen observations (degrees celsius) through time.

Usage

S4 method for signature 'cfScreenObs,missing'
plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

Arguments

x a cfScreenObs object.

y missing.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

Details

Temperature data from screen observations include the air, and wet bulb, temperature at the time
the measurement was taken (dry bulb and wet bulb respectively), and the dew point. The dew point
is the air temperature at which dew starts to form. That is the temperature to which a given air
parcel must be cooled at constant pressure and constant water vapour content in order for saturation
to occur.

The resulting figure plots the dry bulb, wet bulb and dew point temperatures on the same scale, for
each station.

References

Screen Observation details.

https://cliflo.niwa.co.nz/pls/niwp/wh.do_help?id=ls_scr1

22 plot,cfSunshine,missing-method

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfScreenObs objects.

Refer to theme for more possible arguments to pass to these methods.

Examples

Not run:
Retrieve public temperature data from screen observations for the last week
at Reefton Ews station

Subtract 7 days from today's date to get the start date
last_week = paste(as.character(Sys.Date() - 7), 0)

reefton_screenobs = cf_query(cf_user(), cf_datatype(4, 1, 1), cf_station(),
start_date = last_week)

class(reefton_screenobs) # cfScreenObs object

Plot the temperature data using the defaults
plot(reefton_screenobs)

Enlarge the text and add the observations as points
library(ggplot2) # for element_text() and geom_point()
plot(reefton_screenobs, ggtheme = "bw", text = element_text(size = 16)) +

geom_point(size = 3, shape = 1)

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_screenobs_plot.png")

End(Not run)

plot,cfSunshine,missing-method

Plot Sunshine Hours

Description

Plot the duration of accumulated bright sunshine hours through time.

Usage

S4 method for signature 'cfSunshine,missing'
plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),

plot,cfSunshine,missing-method 23

scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

Arguments

x a cfSunshine object.

y missing.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfSunshine objects.

Refer to theme for more possible arguments to pass to these methods.

Examples

Not run:
Retrieve public hourly sunshine data for the last 7 days at Reefton Ews
station

Subtract 7 days from today's date to get the start date
last_week = paste(as.character(Sys.Date() - 7), 0)

reefton_sun = cf_query(cf_user(), cf_datatype(5, 1, 2), cf_station(),
start_date = last_week)

class(reefton_sun) # cfSunshine object

Plot the temperature data using the defaults
plot(reefton_sun)

Enlarge the text and add the observations as points
library(ggplot2) # for element_text() and geom_point()
plot(reefton_sun, ggtheme = "bw", text = element_text(size = 16)) +

geom_point(size = 3, shape = 1)

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_sunshine_plot.png")

End(Not run)

24 plot,cfTemp,missing-method

plot,cfTemp,missing-method

Plot Temperature Range

Description

Plot minimum and maximum temperature data for a given period (degrees celsius) through time,
for each chosen CliFlo station.

Usage

S4 method for signature 'cfTemp,missing'
plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

Arguments

x a cfTemp object.

y missing.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

Details

This plotting method shows the temperature extremes as a grey region on the plot, with a black line
indicating the average temperature (if available).

See Also

plot,cfDataList,missing-method for general information on default plotting of cfData and
cfDataList objects, and the links within. See cf_query for creating cfTemp objects.

Refer to theme for more possible arguments to pass to these methods.

plot,cfWind,missing-method 25

Examples

Not run:
Retrieve public hourly minimum and maximum temperature data for the last
week at Reefton Ews station

Subtract 7 days from today's date to get the start date
last_week = paste(as.character(Sys.Date() - 7), 0)

reefton_temp = cf_query(cf_user(), cf_datatype(4, 2, 2), cf_station(),
start_date = last_week)

class(reefton_temp) # cfTemp object

Plot the temperature data using the defaults
plot(reefton_temp)

Enlarge the text and add the observations as points
library(ggplot2) # for element_text() and geom_point()
plot(reefton_temp, ggtheme = "bw", text = element_text(size = 16)) +

geom_point(size = 3, shape = 1)

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_temperature_plot.png")

End(Not run)

plot,cfWind,missing-method

Plot Clifro Wind Objects

Description

Various plot methods for exploring wind speed and direction patterns for given CliFlo stations.

Usage

S4 method for signature 'cfWind,missing'
plot(
x,
y,
n_directions = 12,
n_speeds = 5,
speed_cuts = NULL,
col_pal = "GnBu",
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
n_col = 1,
...

26 plot,cfWind,missing-method

)

S4 method for signature 'cfWind,missing'
direction_plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
contours = 10,
n_col = 1,
...

)

S4 method for signature 'cfDataList,missing'
direction_plot(x, y, ...)

S4 method for signature 'cfDataList,numeric'
direction_plot(x, y, ...)

S4 method for signature 'cfWind,missing'
speed_plot(
x,
y,
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
scales = c("fixed", "free_x", "free_y", "free"),
n_col = 1,
...

)

S4 method for signature 'cfDataList,missing'
speed_plot(x, y, ...)

S4 method for signature 'cfDataList,numeric'
speed_plot(x, y, ...)

Arguments

x a cfWind or cfDataList object.

y missing if x is a .cfWind object, otherwise a number indicating the dataframe to
plot in the cfDataList (defaults to 1).

n_directions the number of direction bins to plot (petals on the rose). The number of direc-
tions defaults to 12.

n_speeds the number of equally spaced wind speed bins to plot. This is used if spd_cuts
is NA (default 5).

speed_cuts numeric vector containing the cut points for the wind speed intervals, or NA
(default).

col_pal character string indicating the name of the RColorBrewer colour palette to be
used for plotting, see ’Theme Selection’ below.

plot,cfWind,missing-method 27

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

n_col the number of columns of plots (default 1).

... further arguments passed to theme.

contours the number of contour lines to draw (default 10).

scales character string partially matching the scales argument in the link[ggplot2]{facet_wrap}
function.

Details

If x is a cfDataList, by default the first datatype will be plotted unless y is supplied.

Theme Selection

For black and white windroses that may be preferred if plots are to be used in journal articles
for example, recommended ggthemes are 'bw', 'linedraw', 'minimal' or 'classic' and the
col_pal should be 'Greys'. Otherwise, any of the sequential RColorBrewer colour palettes are
recommended for colour plots.

Note

If x is a cfDataList object and y refers to a clifro dataframe that is not a cfWind object then it will
be passed to another method, if available.

The default plot method plots a different windrose for each CliFlo station. The direction_plot
method plots wind direction contours through time to visualise temporal patterns in wind directions.
The speed_plot method plots the time series of wind speeds with a +/- standard deviation region
(if applicable).

Given a value on the x-axis, the ends of the density function along the y-axis are not constrained
to be equal for any of the derivatives for the direction_plot method. That is, the contours at
direction = 0, do not match the contours at direction = 360.

@seealso plot,cfDataList,missing-method for general information on default plotting of cfData
and cfDataList objects, and the links within. See cf_query for creating cfWind objects or
windrose for plotting any wind data. Refer to theme for more possible arguments to pass to these
methods. summary,cfWind-method for summarising wind information at each CliFlo station.

Examples

Not run:
Retrieve maximum wind gust data at the Reefton Ews station from CliFlo
(public data)
reefton_wind = cf_query(cf_user(), cf_datatype(2, 2, 1, 1), cf_station(),

start_date = "2012-01-01-00")

class(reefton_wind)

Examples of the default plots --

Plot a windrose

28 plot,cfWind,missing-method

plot(reefton_wind)

Plot the wind direction contours
direction_plot(reefton_wind)

Plot the wind speed time-series
speed_plot(reefton_wind)

Examples of changing the defaults --

Plot black and white windroses
plot(reefton_wind, ggtheme = "bw", col_pal = "Greys")
plot(reefton_wind, ggtheme = "linedraw", col_pal = "Greys")
plot(reefton_wind, ggtheme = "classic", col_pal = "Greys")
plot(reefton_wind, ggtheme = "minimal", col_pal = "Greys")

Plot the wind directions using 20 contours and the ggtheme 'classic'
direction_plot(reefton_wind, ggtheme = "classic", contours = 20)

Enlarge all the text to 18pt
library(ggplot2) # for element_text() and geom_point()
direction_plot(reefton_wind, ggtheme = "classic", contours = 20,

text = element_text(size = 18))

Include the actual observations in the plots
direction_plot(reefton_wind) + geom_point(alpha = .2, size = 3)

speed_plot(reefton_wind, ggtheme = "classic", text = element_text(size = 16)) +
geom_point(shape = 1, size = 3)

or equivalently using base graphics:
plot(reefton_wind$Date, reefton_wind$Speed, type = 'o',

xlab = NA, ylab = "Daily max gust (m/s)", las = 1, main = "Reefton Ews")

Example of plotting a cfDataList ---
Collect both surface wind run and hourly surface wind observations from
Reefton Ews
reefton_list = cf_query(cf_user(), cf_datatype(2, 1, 1:2, 1),

cf_station(), "2012-01-01 00", "2012-02-01 00")

reefton_list

class(reefton_list) #cfDataList

Plot the first (default) dataframe
plot(reefton_list) # Error - no wind directions for wind run datatypes
Try speed_plot instead
speed_plot(reefton_list)

Plot the second dataframe in the cfDataList
plot(reefton_list, 2) # identical to plot(reefton_list[2])
speed_plot(reefton_list, 2) # identical to speed_plot(reefton_list[2])
direction_plot(reefton_list, 2) # identical to direction_plot(reefton_list[2])

plot.cfDataList 29

Save the ggplot externally ---

Save the plot as a png to the current working directory
library(ggplot2) # for ggsave()
ggsave("my_wind_plot.png")

End(Not run)

plot.cfDataList Default Clifro Plotting

Description

Plot clifro data based on the datatype.

Usage

S4 method for signature 'cfDataList,numeric'
plot(x, y, ...)

S4 method for signature 'cfDataList,missing'
plot(x, y, ...)

S4 method for signature 'cfOther,missing'
plot(x, y)

Arguments

x a cfData or cfDataList object.

y missing for cfData objects, or a number representing the dataframe to plot if x
is a cfDataList object.

... arguments passed onto the different plotting methods.
These methods are intended to simplify the data visualisation and exploration of
CliFlo data. The type of plot is determined by the type of the data output from
a clifro query. All of these methods plot individual plots for each CliFlo station
(if there is more than one in the query). If x is a cfDataList, by default the first
datatype will be plotted unless y is supplied.
The following table links the datatypes to the corresponding plot methods:

Datatype Method
Wind plot.cfWind for windrose, wind speed and direction contour plots
Rain plot.cfRain for plotting rainfall (mm) through time
Screen Obs plot.cfScreenObs for time series plots of air, wet bulb, and dew-point temperature plots
Max/Min Temp plot.cfTemp for maximum, minimum and average temperature time series plots
Earth Temp plot.cfEarthTemp for earth temperature time series plots
Sunshine plot.cfSunshine for accumulated, hourly or daily sunshine, time series plots

30 summary,cfWind-method

Pressure plot.cfPressure for mean sea level atmospheric pressure time series plots
Other data No default plot methods

See Also

cf_query to retrieve the CliFlo data and create cfData objects.

Refer to theme for more possible arguments to pass to these methods.

summary,cfUser-method Summarise User Information

Description

Show the subscription status for the clifro user

Usage

S4 method for signature 'cfUser'
summary(object)

Arguments

object an object of class cfUser.

summary,cfWind-method Summarise Clifro Wind Data

Description

This is a summary method for cfWind objects.

Usage

S4 method for signature 'cfWind'
summary(object, calm_wind = 0)

Arguments

object a cfWind object.

calm_wind a single number containing the wind speed that is considered calm.

Details

A dataframe is returned containing the percentage of calm days (wind speed >= calm_days), per-
centage of variable days (wind speed = 990), and quantiles from the empirical cumulative distribu-
tion functions for each CliFlo station at which there is wind data.

windrose 31

See Also

plot.cfWind for default plotting of clifro wind data, and cf_query for creating cfWind objects.

Examples

Not run:
Retrieve maximum wind gust data at the Reefton Ews station from CliFlo
(public data)
reefton_wind = cf_query(cf_user(), cf_datatype(2, 2, 1, 1), cf_station(),

start_date = "2012-01-01-00")

class(reefton_wind) # cfWind object

Summarise the information
summary(reefton_wind)

End(Not run)

windrose Plot a Wind Rose

Description

Plot a wind rose showing the wind speed and direction for given facets using ggplot2.

Usage

windrose(
speed,
direction,
facet,
n_directions = 12,
n_speeds = 5,
speed_cuts = NA,
col_pal = "GnBu",
ggtheme = c("grey", "gray", "bw", "linedraw", "light", "minimal", "classic"),
legend_title = "Wind Speed",
calm_wind = 0,
variable_wind = 990,
n_col = 1,
...

)

Arguments

speed numeric vector of wind speeds.

direction numeric vector of wind directions.

32 windrose

facet character or factor vector of the facets used to plot the various wind roses.

n_directions the number of direction bins to plot (petals on the rose). The number of direc-
tions defaults to 12.

n_speeds the number of equally spaced wind speed bins to plot. This is used if speed_cuts
is NA (default 5).

speed_cuts numeric vector containing the cut points for the wind speed intervals, or NA
(default).

col_pal character string indicating the name of the RColorBrewer colour palette to be
used for plotting, see ’Theme Selection’ below.

ggtheme character string (partially) matching the ggtheme to be used for plotting, see
’Theme Selection’ below.

legend_title character string to be used for the legend title.

calm_wind the direction of wind that is considered calm. Following convention of the Na-
tional Weather Service, winds with a direction of 0 are considered calm by de-
fault.

variable_wind numeric code for variable winds (if applicable).

n_col The number of columns of plots (default 1).

... further arguments passed to theme.

Details

This is intended to be used as a stand-alone function for any wind dataset. A different wind rose is
plotted for each level of the faceting variable which is coerced to a factor if necessary. The facets
will generally be the station where the data were collected, seasons or dates. Currently only one
faceting variable is allowed and is passed to facet_wrap with the formula ~facet.

Note that calm winds are excluded from the wind rose.

Value

a ggplot object.

Theme Selection

For black and white wind roses that may be preferred if plots are to be used in journal articles
for example, recommended ggthemes are 'bw', 'linedraw', 'minimal' or 'classic' and the
col_pal should be 'Greys'. Otherwise, any of the sequential RColorBrewer colour palettes are
recommended for colour plots.

See Also

theme for more possible arguments to pass to windrose.

[[,dataFrame-method 33

Examples

Create some dummy wind data with predominant south to westerly winds, and
occasional yet higher wind speeds from the NE (not too dissimilar to
Auckland).

wind_df = data.frame(wind_speeds = c(rweibull(80, 2, 4), rweibull(20, 3, 9)),
wind_dirs = c(rnorm(80, 135, 55), rnorm(20, 315, 35)) %% 360,
station = rep(rep(c("Station A", "Station B"), 2),

rep(c(40, 10), each = 2)))

Plot a simple wind rose using all the defaults, ignoring any facet variable
with(wind_df, windrose(wind_speeds, wind_dirs))

Create custom speed bins, add a legend title, and change to a B&W theme
with(wind_df, windrose(wind_speeds, wind_dirs,

speed_cuts = c(3, 6, 9, 12),
legend_title = "Wind Speed\n(m/s)",
legend.title.align = .5,
ggtheme = "bw",
col_pal = "Greys"))

Note that underscore-separated arguments come from the windrose method, and
period-separated arguments come from ggplot2::theme().

Include a facet variable with one level
with(wind_df, windrose(wind_speeds, wind_dirs, "Artificial Auckland Wind"))

Plot a windrose for each level of the facet variable (each station)
with(wind_df, windrose(wind_speeds, wind_dirs, station, n_col = 2))

Not run:
Save the plot as a png to the current working directory
library(ggplot2)
ggsave("my_windrose.png")

End(Not run)

[[,dataFrame-method Subsetting Methods for Clifro Objects

Description

Operators acting on cfDataList, cfDatatype, cfStation, and dataFrame objects.

Usage

S4 method for signature 'dataFrame'
x[[i]]

34 [[,dataFrame-method

S4 method for signature 'dataFrame,ANY,ANY,ANY'
x[i, j, drop]

S4 method for signature 'dataFrame'
x$name

S4 method for signature 'cfStation,ANY,ANY,ANY'
x[i, j, drop = TRUE]

S4 method for signature 'cfDataList,ANY,ANY,ANY'
x[i, j]

S4 method for signature 'cfDataList'
x[[i]]

S4 method for signature 'cfDatatype,ANY,missing,missing'
x[i, j, drop]

Arguments

x a clifro object

i indices specifying elements to extract. Indices are numeric or character vec-
tors or empty (missing) or NULL. Character vectors will be matched to the names
of the object.

j indices specifying elements to extract. Indices are numeric or character vec-
tors or empty (missing) or NULL. Character vectors will be matched to the names
of the object.

drop if TRUE, the result is coerced to the lowest possible dimension. See drop for
further details.

name a literal character string. This is partially matched to the names of the object.

Details

These are methods for the generic operators for classes within clifro. They are intended to give the
user the familiar functionality of subsetting data.frame objects.

Index

∗ package
clifro, 14

+,cfDatatype,cfDatatype-method
(+,cfStation,cfStation-method),
2

+,cfStation,cfStation-method, 2
[,cfDataList,ANY,ANY,ANY-method

([[,dataFrame-method), 33
[,cfDatatype,ANY,missing,missing

([[,dataFrame-method), 33
[,cfDatatype,ANY,missing,missing-method

([[,dataFrame-method), 33
[,cfStation,ANY,ANY,ANY-method

([[,dataFrame-method), 33
[,dataFrame,ANY,ANY,ANY-method

([[,dataFrame-method), 33
[[,cfDataList-method

([[,dataFrame-method), 33
[[,dataFrame-method, 33
$,dataFrame-method

([[,dataFrame-method), 33

cf_curl_opts, 6
cf_datatype, 3, 11, 14
cf_datatype (cfDatatype-class), 3
cf_find_station, 5, 7, 13
cf_last_query, 9
cf_query, 10, 14, 16–18, 20, 22–24, 27, 30, 31
cf_save_kml, 5, 8, 12
cf_station, 4, 8, 11, 13, 14, 16
cf_station (cfStation-class), 4
cf_user, 4, 11, 14
cf_user (cfUser-class), 5
cfDatatype, 3, 10, 11
cfDatatype (cfDatatype-class), 3
cfDatatype-class, 3
cfStation, 8, 10–13, 16
cfStation (cfStation-class), 4
cfStation-class, 4
cfUser, 10, 11

cfUser (cfUser-class), 5
cfUser-class, 5
clifro, 14
clifro-package (clifro), 14

data.frame, 34
dim,dataFrame-method

(dimnames,dataFrame-method), 16
dimnames,dataFrame-method, 16
direction_plot

(plot,cfWind,missing-method),
25

direction_plot,cfDataList,missing-method
(plot,cfWind,missing-method),
25

direction_plot,cfDataList,numeric-method
(plot,cfWind,missing-method),
25

direction_plot,cfWind,missing-method
(plot,cfWind,missing-method),
25

drop, 34

Extract ([[,dataFrame-method), 33

facet_wrap, 32

ggtheme, 17, 18, 20, 21, 23, 24, 27, 32

now, 11

plot,cfDataList,missing-method
(plot.cfDataList), 29

plot,cfDataList,numeric-method
(plot.cfDataList), 29

plot,cfEarthTemp,missing-method, 16
plot,cfOther,missing-method

(plot.cfDataList), 29
plot,cfPressure,missing-method, 18
plot,cfRain,missing-method, 19
plot,cfScreenObs,missing-method, 21

35

36 INDEX

plot,cfSunshine,missing-method, 22
plot,cfTemp,missing-method, 24
plot,cfWind,missing-method, 25
plot.cfDataList, 29
plot.cfEarthTemp, 29
plot.cfEarthTemp

(plot,cfEarthTemp,missing-method),
16

plot.cfPressure, 30
plot.cfPressure

(plot,cfPressure,missing-method),
18

plot.cfRain, 29
plot.cfRain

(plot,cfRain,missing-method),
19

plot.cfScreenObs, 29
plot.cfScreenObs

(plot,cfScreenObs,missing-method),
21

plot.cfSunshine, 29
plot.cfSunshine

(plot,cfSunshine,missing-method),
22

plot.cfTemp, 29
plot.cfTemp

(plot,cfTemp,missing-method),
24

plot.cfWind, 29, 31
plot.cfWind

(plot,cfWind,missing-method),
25

speed_plot
(plot,cfWind,missing-method),
25

speed_plot,cfDataList,missing-method
(plot,cfWind,missing-method),
25

speed_plot,cfDataList,numeric-method
(plot,cfWind,missing-method),
25

speed_plot,cfWind,missing-method
(plot,cfWind,missing-method),
25

summary,cfUser-method, 30
summary,cfWind-method, 30

theme, 17, 18, 20–24, 27, 30, 32

valid_cfuser, 6

windrose, 27, 31
with_tz, 11

	+,cfStation,cfStation-method
	cfDatatype-class
	cfStation-class
	cfUser-class
	cf_curl_opts
	cf_find_station
	cf_last_query
	cf_query
	cf_save_kml
	clifro
	dimnames,dataFrame-method
	plot,cfEarthTemp,missing-method
	plot,cfPressure,missing-method
	plot,cfRain,missing-method
	plot,cfScreenObs,missing-method
	plot,cfSunshine,missing-method
	plot,cfTemp,missing-method
	plot,cfWind,missing-method
	plot.cfDataList
	summary,cfUser-method
	summary,cfWind-method
	windrose
	[[,dataFrame-method
	Index

