Package 'daiquiri'

Title: Data Quality Reporting for Temporal Datasets
Description: Generate reports that enable quick visual review of temporal shifts in record-level data. Time series plots showing aggregated values are automatically created for each data field (column) depending on its contents (e.g. min/max/mean values for numeric data, no. of distinct values for categorical data), as well as overviews for missing values, non-conformant values, and duplicated rows. The resulting reports are shareable and can contribute to forming a transparent record of the entire analysis process. It is designed with Electronic Health Records in mind, but can be used for any type of record-level temporal data (i.e. tabular data where each row represents a single "event", one column contains the "event date", and other columns contain any associated values for the event).
Authors: T. Phuong Quan [aut, cre] , Jack Cregan [ctb], University of Oxford [cph], National Institute for Health Research (NIHR) [fnd], Brad Cannell [rev]
Maintainer: T. Phuong Quan <[email protected]>
License: GPL (>= 3)
Version: 1.1.1.9000
Built: 2024-12-01 07:58:09 UTC
Source: https://github.com/ropensci/daiquiri

Help Index


Aggregate source data

Description

Aggregates a daiquiri_source_data object based on the field_types() specified at load time. Default time period for aggregation is a calendar day

Usage

aggregate_data(source_data, aggregation_timeunit = "day", show_progress = TRUE)

Arguments

source_data

A daiquiri_source_data object returned from prepare_data() function

aggregation_timeunit

Unit of time to aggregate over. Specify one of "day", "week", "month", "quarter", "year". The "week" option is Monday-based. Default = "day"

show_progress

Print progress to console. Default = TRUE

Value

A daiquiri_aggregated_data object

See Also

prepare_data(), report_data()

Examples

# load example data into a data.frame
raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

# validate and prepare the data for aggregation
source_data <- prepare_data(
  raw_data,
  field_types = field_types(
    PrescriptionID = ft_uniqueidentifier(),
    PrescriptionDate = ft_timepoint(),
    AdmissionDate = ft_datetime(includes_time = FALSE),
    Drug = ft_freetext(),
    Dose = ft_numeric(),
    DoseUnit = ft_categorical(),
    PatientID = ft_ignore(),
    Location = ft_categorical(aggregate_by_each_category = TRUE)
  ),
  override_column_names = FALSE,
  na = c("", "NULL")
)

# aggregate the data
aggregated_data <- aggregate_data(
  source_data,
  aggregation_timeunit = "day"
)

aggregated_data

Close any active log file

Description

Close any active log file

Usage

close_log()

Value

If a log file was found, the path to the log file that was closed, otherwise an empty string

Examples

close_log()

Create a data quality report from a data frame

Description

Accepts record-level data from a data frame, validates it against the expected type of content of each column, generates a collection of time series plots for visual inspection, and saves a report to disk.

Usage

daiquiri_report(
  df,
  field_types,
  override_column_names = FALSE,
  na = c("", "NA", "NULL"),
  dataset_description = NULL,
  aggregation_timeunit = "day",
  report_title = "daiquiri data quality report",
  save_directory = ".",
  save_filename = NULL,
  show_progress = TRUE,
  log_directory = NULL
)

Arguments

df

A data frame. Rectangular data can be read from file using read_data(). See Details.

field_types

field_types() object specifying names and types of fields (columns) in the supplied df. See also field_types_available.

override_column_names

If FALSE, column names in the supplied df must match the names specified in field_types exactly. If TRUE, column names in the supplied df will be replaced with the names specified in field_types. The specification must therefore contain the columns in the correct order. Default = FALSE

na

vector containing strings that should be interpreted as missing values, Default = c("","NA","NULL").

dataset_description

Short description of the dataset being checked. This will appear on the report. If blank, the name of the data frame object will be used

aggregation_timeunit

Unit of time to aggregate over. Specify one of "day", "week", "month", "quarter", "year". The "week" option is Monday-based. Default = "day"

report_title

Title to appear on the report

save_directory

String specifying directory in which to save the report. Default is current directory.

save_filename

String specifying filename for the report, excluding any file extension. If no filename is supplied, one will be automatically generated with the format daiquiri_report_YYMMDD_HHMMSS.

show_progress

Print progress to console. Default = TRUE

log_directory

String specifying directory in which to save log file. If no directory is supplied, progress is not logged.

Value

A list containing information relating to the supplied parameters as well as the resulting daiquiri_source_data and daiquiri_aggregated_data objects.

Details

In order for the package to detect any non-conformant values in numeric or datetime fields, these should be present in the data frame in their raw character format. Rectangular data from a text file will automatically be read in as character type if you use the read_data() function. Data frame columns that are not of class character will still be processed according to the field_types specified.

See Also

read_data(), field_types(), field_types_available()

Examples

# load example data into a data.frame
raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

# create a report in the current directory
daiq_obj <- daiquiri_report(
  raw_data,
  field_types = field_types(
    PrescriptionID = ft_uniqueidentifier(),
    PrescriptionDate = ft_timepoint(),
    AdmissionDate = ft_datetime(includes_time = FALSE, na = "1800-01-01"),
    Drug = ft_freetext(),
    Dose = ft_numeric(),
    DoseUnit = ft_categorical(),
    PatientID = ft_ignore(),
    Location = ft_categorical(aggregate_by_each_category = TRUE)
  ),
  override_column_names = FALSE,
  na = c("", "NULL"),
  dataset_description = "Example data provided with package",
  aggregation_timeunit = "day",
  report_title = "daiquiri data quality report",
  save_directory = ".",
  save_filename = "example_data_report",
  show_progress = TRUE,
  log_directory = NULL
)

Export aggregated data

Description

Export aggregated data to disk. Creates a separate file for each aggregated field in dataset.

Usage

export_aggregated_data(
  aggregated_data,
  save_directory,
  save_file_prefix = "",
  save_file_type = "csv"
)

Arguments

aggregated_data

A daiquiri_aggregated_data object

save_directory

String. Full or relative path for save folder

save_file_prefix

String. Optional prefix for the exported filenames

save_file_type

String. Filetype extension supported by readr, currently only csv allowed

Value

(invisibly) The daiquiri_aggregated_data object that was passed in

Examples

raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

source_data <- prepare_data(
  raw_data,
  field_types = field_types(
    PrescriptionID = ft_uniqueidentifier(),
    PrescriptionDate = ft_timepoint(),
    AdmissionDate = ft_datetime(includes_time = FALSE),
    Drug = ft_freetext(),
    Dose = ft_numeric(),
    DoseUnit = ft_categorical(),
    PatientID = ft_ignore(),
    Location = ft_categorical(aggregate_by_each_category = TRUE)
  ),
  override_column_names = FALSE,
  na = c("", "NULL")
)

aggregated_data <- aggregate_data(
  source_data,
  aggregation_timeunit = "day"
)

export_aggregated_data(
  aggregated_data,
  save_directory = ".",
  save_file_prefix = "ex_"
)

Create field_types specification

Description

Specify the names and types of fields in the source data frame. This is important because the data in each field will be aggregated in different ways, depending on its field_type. See field_types_available

Usage

field_types(...)

Arguments

...

names and types of fields (columns) in source data.

Value

A field_types object

See Also

field_types_available(), template_field_types()

Examples

fts <- field_types(
  PatientID = ft_uniqueidentifier(),
  TestID = ft_ignore(),
  TestDate = ft_timepoint(),
  TestName = ft_categorical(aggregate_by_each_category = FALSE),
  TestResult = ft_numeric(),
  ResultDate = ft_datetime(),
  ResultComment = ft_freetext(),
  Location = ft_categorical()
)

fts

Create field_types_advanced specification

Description

Specify only a subset of the names and types of fields in the source data frame. The remaining fields will be given the same 'default' type.

Usage

field_types_advanced(..., .default_field_type = ft_simple())

Arguments

...

names and types of fields (columns) in source data.

.default_field_type

field_type to use for any remaining fields (columns) in source data. Note, this means there can not be a field in the data named .default_field_type

Value

A field_types object

See Also

field_types(), field_types_available(), template_field_types()

Examples

fts <- field_types_advanced(
  PrescriptionDate = ft_timepoint(),
  PatientID = ft_ignore(),
  .default_field_type = ft_simple()
)

fts

Types of data fields available for specification

Description

Each column in the source dataset must be assigned to a particular ft_xx depending on the type of data that it contains. This is done through a field_types() specification.

Usage

ft_timepoint(includes_time = TRUE, format = "", na = NULL)

ft_uniqueidentifier(na = NULL)

ft_categorical(aggregate_by_each_category = FALSE, na = NULL)

ft_numeric(na = NULL)

ft_datetime(includes_time = TRUE, format = "", na = NULL)

ft_freetext(na = NULL)

ft_simple(na = NULL)

ft_strata(na = NULL)

ft_ignore()

Arguments

includes_time

If TRUE, additional aggregated values will be generated using the time portion (and if no time portion is present then midnight will be assumed). If FALSE, aggregated values will ignore any time portion. Default = TRUE

format

Where datetime values are not in the format YYYY-MM-DD or ⁠YYYY-MM-DD HH:MM:SS⁠, an alternative format can be specified at the per field level, using readr::col_datetime() format specifications, e.g. format = "%d/%m/%Y". When a format is supplied, it must match the complete string.

na

Column-specific vector of strings that should be interpreted as missing values (in addition to those specified at dataset level)

aggregate_by_each_category

If TRUE, aggregated values will be generated for each distinct subcategory as well as for the field overall. If FALSE, aggregated values will only be generated for the field overall. Default = FALSE

Value

A field_type object denoting the type of data in the column

Details

ft_timepoint() - identifies the data field which should be used as the independent time variable. There should be one and only one of these specified.

ft_uniqueidentifier() - identifies data fields which contain a (usually computer-generated) identifier for an entity, e.g. a patient. It does not need to be unique within the dataset.

ft_categorical() - identifies data fields which should be treated as categorical.

ft_numeric() - identifies data fields which contain numeric values that should be treated as continuous. Any values which contain non-numeric characters (including grouping marks) will be classed as non-conformant

ft_datetime() - identifies data fields which contain date values that should be treated as continuous.

ft_freetext() - identifies data fields which contain free text values. Only presence/missingness will be evaluated.

ft_simple() - identifies data fields where you only want presence/missingness to be evaluated (but which are not necessarily free text).

ft_strata() - identifies a categorical data field which should be used to stratify the rest of the data.

ft_ignore() - identifies data fields which should be ignored. These will not be loaded.

See Also

field_types(), template_field_types()

Examples

fts <- field_types(
  PatientID = ft_uniqueidentifier(),
  TestID = ft_ignore(),
  TestDate = ft_timepoint(),
  TestName = ft_categorical(aggregate_by_each_category = FALSE),
  TestResult = ft_numeric(),
  ResultDate = ft_datetime(),
  ResultComment = ft_freetext(),
  Location = ft_categorical()
)

ft_simple()

Initialise a log file

Description

Choose a directory in which to save the log file. If this is not called, no log file is created.

Usage

initialise_log(log_directory)

Arguments

log_directory

String containing directory to save log file

Value

Character string containing the full path to the newly-created log file

Examples

log_name <- initialise_log(".")

log_name

Prepare source data

Description

Validate a data frame against a field_types() specification, and prepare for aggregation.

Usage

prepare_data(
  df,
  field_types,
  override_column_names = FALSE,
  na = c("", "NA", "NULL"),
  dataset_description = NULL,
  show_progress = TRUE
)

Arguments

df

A data frame

field_types

field_types() object specifying names and types of fields (columns) in the supplied df. See also field_types_available.

override_column_names

If FALSE, column names in the supplied df must match the names specified in field_types exactly. If TRUE, column names in the supplied df will be replaced with the names specified in field_types. The specification must therefore contain the columns in the correct order. Default = FALSE

na

vector containing strings that should be interpreted as missing values. Default = c("","NA","NULL"). Additional column-specific values can be specified in the field_types() object

dataset_description

Short description of the dataset being checked. This will appear on the report. If blank, the name of the data frame object will be used

show_progress

Print progress to console. Default = TRUE

Value

A daiquiri_source_data object

See Also

field_types(), field_types_available(), aggregate_data(), report_data(), daiquiri_report()

Examples

# load example data into a data.frame
raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

# validate and prepare the data for aggregation
source_data <- prepare_data(
  raw_data,
  field_types = field_types(
    PrescriptionID = ft_uniqueidentifier(),
    PrescriptionDate = ft_timepoint(),
    AdmissionDate = ft_datetime(includes_time = FALSE),
    Drug = ft_freetext(),
    Dose = ft_numeric(),
    DoseUnit = ft_categorical(),
    PatientID = ft_ignore(),
    Location = ft_categorical(aggregate_by_each_category = TRUE)
  ),
  override_column_names = FALSE,
  na = c("", "NULL"),
  dataset_description = "Example data provided with package"
)

source_data

Read delimited data for optimal use with daiquiri

Description

Popular file readers such as readr::read_delim() perform datatype conversion by default, which can interfere with daiquiri's ability to detect non-conformant values. Use this function instead to ensure optimal compatibility with daiquiri's features.

Usage

read_data(
  file,
  delim = NULL,
  col_names = TRUE,
  quote = "\"",
  trim_ws = TRUE,
  comment = "",
  skip = 0,
  n_max = Inf,
  show_progress = TRUE
)

Arguments

file

A string containing path of file containing data to load, or a URL starting ⁠http://⁠, ⁠file://⁠, etc. Compressed files with extension .gz, .bz2, .xz and .zip are supported.

delim

Single character used to separate fields within a record. E.g. "," or "\t"

col_names

Either TRUE, FALSE or a character vector of column names. If TRUE, the first row of the input will be used as the column names, and will not be included in the data frame. If FALSE, column names will be generated automatically. Default = TRUE

quote

Single character used to quote strings.

trim_ws

Should leading and trailing whitespace be trimmed from each field?

comment

A string used to identify comments. Any text after the comment characters will be silently ignored

skip

Number of lines to skip before reading data. If comment is supplied any commented lines are ignored after skipping

n_max

Maximum number of lines to read.

show_progress

Display a progress bar? Default = TRUE

Details

This function is aimed at non-expert users of R, and operates as a restricted implementation of readr::read_delim(). If you prefer to use read_delim() directly, ensure you set the following parameters: col_types = readr::cols(.default = "c") and na = character()

Value

A data frame

See Also

field_types(), field_types_available(), aggregate_data(), report_data(), daiquiri_report()

Examples

raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

head(raw_data)

Generate report from existing objects

Description

Generate report from previously-created daiquiri_source_data and daiquiri_aggregated_data objects

Usage

report_data(
  source_data,
  aggregated_data,
  report_title = "daiquiri data quality report",
  save_directory = ".",
  save_filename = NULL,
  format = "html",
  show_progress = TRUE,
  ...
)

Arguments

source_data

A daiquiri_source_data object returned from prepare_data() function

aggregated_data

A daiquiri_aggregated_data object returned from aggregate_data() function

report_title

Title to appear on the report

save_directory

String specifying directory in which to save the report. Default is current directory.

save_filename

String specifying filename for the report, excluding any file extension. If no filename is supplied, one will be automatically generated with the format daiquiri_report_YYMMDD_HHMMSS.

format

File format of the report. Currently only "html" is supported

show_progress

Print progress to console. Default = TRUE

...

Further parameters to be passed to rmarkdown::render(). Cannot include any of input, output_dir, output_file, params, quiet.

Value

A string containing the name and path of the saved report

See Also

prepare_data(), aggregate_data(), daiquiri_report()

Examples

# load example data into a data.frame
raw_data <- read_data(
  system.file("extdata", "example_prescriptions.csv", package = "daiquiri"),
  delim = ",",
  col_names = TRUE
)

# validate and prepare the data for aggregation
source_data <- prepare_data(
  raw_data,
  field_types = field_types(
    PrescriptionID = ft_uniqueidentifier(),
    PrescriptionDate = ft_timepoint(),
    AdmissionDate = ft_datetime(includes_time = FALSE),
    Drug = ft_freetext(),
    Dose = ft_numeric(),
    DoseUnit = ft_categorical(),
    PatientID = ft_ignore(),
    Location = ft_categorical(aggregate_by_each_category = TRUE)
  ),
  override_column_names = FALSE,
  na = c("", "NULL"),
  dataset_description = "Example data provided with package",
  show_progress = TRUE
)

# aggregate the data
aggregated_data <- aggregate_data(
  source_data,
  aggregation_timeunit = "day",
  show_progress = TRUE
)

# save a report in the current directory using the previously-created objects
report_data(
  source_data,
  aggregated_data,
  report_title = "daiquiri data quality report",
  save_directory = ".",
  save_filename = "example_data_report",
  show_progress = TRUE
)

Print a template field_types() specification to console

Description

Helper function to generate template code for a field_types() specification, based on the supplied data frame. All fields (columns) in the specification will be defined using the default_field_type, and the console output can be copied and edited before being used as input to daiquiri_report() or prepare_data().

Usage

template_field_types(df, default_field_type = ft_ignore())

Arguments

df

data frame including the column names for the template specification

default_field_type

field_type to be used for each column. Default = ft_ignore(). See field_types_available()

Value

(invisibly) Character string containing the template code

See Also

field_types()

Examples

df <- data.frame(
  col1 = rep("2022-01-01", 5),
  col2 = rep(1, 5),
  col3 = 1:5,
  col4 = rnorm(5)
)

template_field_types(df, default_field_type = ft_numeric())