
Package: dittodb (via r-universe)
November 26, 2024

Title A Test Environment for Database Requests

Version 0.1.8

URL https://dittodb.jonkeane.com/, https://github.com/ropensci/dittodb

BugReports https://github.com/ropensci/dittodb/issues

Description Testing and documenting code that communicates with remote
databases can be painful. Although the interaction with R is
usually relatively simple (e.g. data(frames) passed to and from
a database), because they rely on a separate service and the
data there, testing them can be difficult to set up,
unsustainable in a continuous integration environment, or
impossible without replicating an entire production cluster.
This package addresses that by allowing you to make recordings
from your database interactions and then play them back while
testing (or in other contexts) all without needing to spin up
or have access to the database your code would typically
connect to.

License Apache License (>= 2.0)

Encoding UTF-8

Depends R (>= 3.3.0), DBI

Imports digest, glue, methods, rlang, utils, lifecycle

Suggests bit64, callr, covr, dplyr, dbplyr, knitr, nycflights13, odbc,
RMariaDB, RPostgres, RPostgreSQL, RSQLite, spelling, testthat,
withr, rmarkdown

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

Language en-US

VignetteBuilder knitr

Config/testthat/edition 3

Collate 'capture-requests.R' 'connection.R' 'dbExistsTable.R'
'dbListTables-Fields.R' 'driver-specific-connections.R'
'dbQueries-Results.R' 'dbMisc.R' 'mock-paths.R' 'dittodb-env.R'

1

https://dittodb.jonkeane.com/
https://github.com/ropensci/dittodb
https://github.com/ropensci/dittodb/issues

2 capture_requests

'expect-sql.R' 'mock-db.R' 'nycflights13-sql.R' 'paths.R'
'quote.R' 'redact.R' 'serialize-bit64.R' 'transactions.R'
'use-dittodb.R' 'utils.R' 'vctrs_s3_register.R'

RdMacros lifecycle

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/dittodb

RemoteRef main

RemoteSha 97520b2d8874091743eb6183badbb7a45dd070e6

Contents

capture_requests . 2
expect_sql . 4
mock-db-methods . 5
mockdb . 7
nycflights13_create_sql . 9
nycflights13_create_sqlite . 10
nycflights_sqlite . 11
redact_columns . 11
set_dittodb_debug_level . 13
use_dittodb . 13
with_mock_path . 14

Index 16

capture_requests Capture and record database transactions and save them as mocks

Description

When creating database fixtures, it can sometimes be helpful to record the responses from the
database for use in crafting tests.

Usage

start_db_capturing(path, redact_columns = NULL)

stop_db_capturing()

capture_db_requests(expr, path, redact_columns = NULL)

capture_requests 3

Arguments

path the path to record mocks (default if missing: the first path in db_mock_paths().

redact_columns a character vector of columns to redact. Any column that matches an entry will
be redacted with a standard value for the column type (e.g. characters will be
replaced with "[redacted]")

expr an expression to evaluate while capturing requests (for capture_db_requests())

Details

You can start capturing with start_db_capturing() and end it with stop_db_capturing(). All
queries run against a database will be executed like normal, but their responses will be saved to
the mock path given, so that if you use the same queries later inside of a with_mock_db block, the
database functions will return as if they had been run against the database.

Alternatively, you can wrap the code that you are trying to capture in the function capture_db_requests({...})
this does the same thing as start_db_capturing() and stop_db_capturing() but without need-
ing to remember to stop the recording.

You can redact certain columns using the redact_columns argument. This will replace the values
in the column with a generic redacted version. This works by always passing the data being saved
through redact_columns.

note You should always call DBI::dbConnect inside of the capturing block. When you connect to
the database, dittodb sets up the mocks for the specific database you’re connecting to when you call
DBI::dbConnect.

Value

NULL (invisibily)

Examples

if (check_for_pkg("RSQLite", message)) {
Temporary files for examples
nycflights_path <- tempfile()

con <- nycflights13_create_sqlite(location = nycflights_path)
dbDisconnect(con)

start_db_capturing()
con <- dbConnect(RSQLite::SQLite(), nycflights_path)

df_1 <- dbGetQuery(con, "SELECT * FROM airlines LIMIT 1")
res <- dbSendQuery(con, "SELECT * FROM airlines LIMIT 2")
df_2 <- dbFetch(res)
dbClearResult(res)

dbDisconnect(con)
stop_db_capturing()

start_db_capturing(redact_columns = "carrier")
con <- dbConnect(RSQLite::SQLite(), nycflights_path)

4 expect_sql

df_3 <- dbGetQuery(con, "SELECT * FROM airlines LIMIT 3")

dbDisconnect(con)
stop_db_capturing()

with_mock_db({
con <- dbConnect(RSQLite::SQLite(), nycflights_path)

the result from df1 above
print(dbGetQuery(con, "SELECT * FROM airlines LIMIT 1"))

the result from df3 above
print(dbGetQuery(con, "SELECT * FROM airlines LIMIT 3"))

})
}

expect_sql Detect if a specific SQL statement is sent

Description

[Experimental]

Usage

expect_sql(object, regexp = NULL, ...)

Arguments

object the expression to evaluate

regexp the statement to match

... arguments passed to testthat::expect_error()

Details

Sometimes all you need to check is if a specific SQL statement has been sent and you don’t care
about retrieving the results.

This works by raising an error that contains the statement that is sent to the database as well as the
location of the result. Currently, expect_sql() only works with DBI::dbSendQuery() (and most
implementations of DBI::dbGetQuery() which call DBI::dbSendQuery() internally).

Note: this function is experimental and will likely evolve over time. Please be prepared that new
releases might break backwards compatibility.

mock-db-methods 5

Examples

if (check_for_pkg("RSQLite", message)) {
with_mock_db({
con <- dbConnect(RSQLite::SQLite(), dbname = "not_a_db")

expect_sql(
dbGetQuery(con, "SELECT carrier, name FROM airlines LIMIT 3"),
"SELECT carrier, name FROM airlines LIMIT 3"

)
})

}

mock-db-methods Methods for interacting with DB mocks instead of an actual database

Description

Various methods (dbSendQuery, dbFetchQuery) that are mocks of the DBI methods of the same
name. Instead of actually interacting with a database, they read in mock responses and the code
proceeds after that. These aren’t used directly, but are part of how dittodb works.

Usage

S4 method for signature 'DBIMockConnection'
dbDisconnect(conn, ...)

dbMockConnect(drv, ...)

S4 method for signature 'DBIMockConnection,character'
dbExistsTable(conn, name, ...)

S4 method for signature 'DBIMockConnection,Id'
dbExistsTable(conn, name, ...)

S4 method for signature 'DBIMockConnection'
dbListTables(conn, ...)

S4 method for signature 'DBIMockConnection,character'
dbListFields(conn, name, ...)

S4 method for signature 'DBIMockConnection,Id'
dbListFields(conn, name, ...)

S4 method for signature 'DBIMockConnection,ANY'
dbListFields(conn, name, ...)

S4 method for signature 'DBIMockConnection,character'

https://CRAN.R-project.org/package=DBI

6 mock-db-methods

dbSendQuery(conn, statement, ...)

S4 method for signature 'DBIMockConnection,SQL'
dbSendQuery(conn, statement, ...)

S4 method for signature 'DBIMockConnection,character'
dbSendStatement(conn, statement, ...)

S4 method for signature 'DBIMockResult'
dbFetch(res, n = -1, ...)

S4 method for signature 'DBIMockResult,ANY'
fetch(res, n = -1, ...)

S4 method for signature 'DBIMockResult,missing'
fetch(res, n = -1, ...)

S4 method for signature 'DBIMockResult'
dbClearResult(res, n, ...)

S4 method for signature 'DBIMockResult'
dbHasCompleted(res, ...)

S4 method for signature 'DBIMockRPostgreSQLConnection,character'
dbGetQuery(conn, statement, ...)

S4 method for signature 'DBIMockResult'
dbGetRowsAffected(res, ...)

S4 method for signature 'DBIMockConnection'
dbGetInfo(dbObj, ...)

S4 method for signature 'DBIMockConnection,character,data.frame'
dbWriteTable(conn, name, value, ...)

S4 method for signature 'DBIMockConnection,character'
dbRemoveTable(conn, name, ...)

S4 method for signature 'DBIMockResult'
dbColumnInfo(res, ...)

S4 method for signature 'DBIMockResult'
dbGetInfo(dbObj, ...)

S4 method for signature 'DBIMockRPostgresConnection,character'
dbQuoteIdentifier(conn, x, ...)

S4 method for signature 'DBIMockRPostgresConnection,SQL'

mockdb 7

dbQuoteIdentifier(conn, x, ...)

S4 method for signature 'DBIMockRPostgresConnection,character'
dbQuoteString(conn, x, ...)

S4 method for signature 'DBIMockRPostgresConnection,SQL'
dbQuoteString(conn, x, ...)

S4 method for signature 'DBIMockMariaDBConnection,character'
dbQuoteString(conn, x, ...)

S4 method for signature 'DBIMockMariaDBConnection,SQL'
dbQuoteString(conn, x, ...)

S4 method for signature 'DBIMockConnection'
dbBegin(conn, ..., name = NULL)

S4 method for signature 'DBIMockConnection'
dbCommit(conn, ..., name = NULL)

S4 method for signature 'DBIMockConnection'
dbRollback(conn, ..., name = NULL)

Arguments

conn a database connection (for dispatch with these methods, it should be of class
DBIMockConnection)

... arguments passed on inside of the methods
drv a DB driver for use in dbConnect

name name of the table (for dbListFields, dbWriteTable, dbRemoveTable)
statement an SQL statement to execute
res a result object (for dispatch with these methods, it should be of class DBIMockResult)
n number of results to fetch (ignored)
dbObj a database object (a connection, result, etc.) for use in dbGetInfo

value a value (generally a data.frame) for use in dbWriteTable

x a name to quote (for dbQuoteIdentifier)

mockdb Run DBI queries against a mocked database

Description

Wrap a chunk of code in with_mock_db() to use mocked databases that will use fixtures instead of
connecting to a real database. Alternatively, you can start and stop using a mocked database with
start_mock_db() and stop_mock_db() respectively.to execute the whole thing without needing
to remember to stop the mocking. When testing with dittodb, it will look for fixtures in all entries
of db_mock_paths.

8 mockdb

Usage

with_mock_db(expr)

start_mock_db()

stop_mock_db()

Arguments

expr the expression to execute

Details

You only need to use one approach: either use start_mock_db() to start using mocks and then
stop_mock_db() to stop or use with_mock_db() wrapped around the code you want to execute
against the mocked database. You don’t need to (and should not) use both at the same time. Gen-
erally with_mock_db() is preferred because it is slightly safer and you don’t have to remember to
stop_mock_db() when you’re done. However, it is easier to step through tests interactively using
start_mock_db()/stop_mock_db().

Connections should be made after start_mock_db() if you’re using that function or they should be
made inside of with_mock_db() if you’re using that function because dittodb uses the database
name (given in dbname or Database argument of dbConnect depending on the driver) to separate
different fixtures. For ODBC connections with only a dsn provided, the dsn is used for this directory.

Value

nothing

Examples

Add the mocks included with dittodb to the db_mock_paths to use them below
db_mock_paths(system.file("nycflight_mocks", package = "dittodb"), last = TRUE)

if (check_for_pkg("RSQLite", message) & check_for_pkg("testthat", message)) {
using `with_mock_db()`
with_mock_db({

con <- dbConnect(
RSQLite::SQLite(),
dbname = "nycflights"

)

testthat::test_that("We get one airline", {
one_airline <- dbGetQuery(

con,
"SELECT carrier, name FROM airlines LIMIT 1"

)
testthat::expect_s3_class(one_airline, "data.frame")
testthat::expect_equal(nrow(one_airline), 1)
testthat::expect_equal(one_airline$carrier, "9E")
testthat::expect_equal(one_airline$name, "Endeavor Air Inc.")

nycflights13_create_sql 9

})

dbDisconnect(con)
})

using `start_mock_db()` and `stop_mock_db()`
start_mock_db()
con <- dbConnect(

RSQLite::SQLite(),
dbname = "nycflights"

)

testthat::test_that("We get one airline", {
one_airline <- dbGetQuery(

con,
"SELECT carrier, name FROM airlines LIMIT 1"

)
testthat::expect_s3_class(one_airline, "data.frame")
testthat::expect_equal(nrow(one_airline), 1)
testthat::expect_equal(one_airline$carrier, "9E")
testthat::expect_equal(one_airline$name, "Endeavor Air Inc.")

})

dbDisconnect(con)
stop_mock_db()

}

nycflights13_create_sql

Create a standardised database for testing

Description

Using the connection given in con, create a database including a few tables from the nycflights13
dataset.

Usage

nycflights13_create_sql(con, schema = "", ...)

Arguments

con an SQL connection (i.e a PostgreSQL connection)

schema schema to write the tables ("", or no schema by default)

... additional parameters to connect to a database

Value

the connection given in con invisibly, generally called for the side effects of writing to the database

https://CRAN.R-project.org/package=nycflights13

10 nycflights13_create_sqlite

Examples

if (check_for_pkg("RSQLite", message)) {
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

nycflights13_create_sql(con)

DBI::dbGetQuery(
con,
"SELECT year, month, day, carrier, flight, tailnum FROM flights LIMIT 10"

)

DBI::dbDisconnect(con)
}

nycflights13_create_sqlite

Create an in-memory SQLite database for testing

Description

Create an in-memory SQLite database for testing

Usage

nycflights13_create_sqlite(location = ":memory:", ...)

Arguments

location where to store the database

... additional parameters to connect to a database (most are passed on to nycflights13_create_sql)

Value

RSQLiteConnection

Examples

if (check_for_pkg("RSQLite", message)) {
con <- nycflights13_create_sqlite()

DBI::dbGetQuery(
con,
"SELECT year, month, day, carrier, flight, tailnum FROM flights LIMIT 10"

)

DBI::dbDisconnect(con)
}

nycflights_sqlite 11

nycflights_sqlite An SQLite connection to a subset of nycflights13

Description

Included with dittodb is a small subset of nycflights13 prepopulated into a sqlite database.

Usage

nycflights_sqlite()

Details

This database is helpful for getting to know dittodb and running example code. It contains a small
subset of the data in nycflights13: namely only the flights and planes that had a destination of ORD
or MDW (the codes for the two major airports in Chicago) in February of 2013. The airports table
has also been limited to only the New York and Chicago area airports.

Value

an RSQLiteConnection

Examples

if (check_for_pkg("RSQLite", message)) {
con <- nycflights_sqlite()

DBI::dbGetQuery(con, "SELECT flight, tailnum, origin, dest FROM flights LIMIT 10")
DBI::dbGetQuery(con, "SELECT faa, name, lat, lon, alt, tz FROM airports")

DBI::dbDisconnect(con)
}

redact_columns Redact columns from a dataframe with the default redactors

Description

This function redacts the columns specified in columns in the data given in data using dittodb’s
standard redactors.

Usage

redact_columns(data, columns, ignore.case = TRUE, ...)

https://CRAN.R-project.org/package=nycflights13

12 redact_columns

Arguments

data a dataframe to redact

columns character, the columns to redact

ignore.case should case be ignored? (default: TRUE)

... additional options to pass on to grep() when matching the column names

Details

The column names given in the columns argument are treated as regular expressions, however they
always have ^ and $ added to the beginning and end of the strings. So if you would like to match
any column that starts with the string sensitive (e.g. sensitive_name, sensitive_date) you
could use "sensitive.* and this would catch all of those columns (though it would not catch a
column called most_sensitive_name).

The standard redactors replace all values in the column with the following values based on the
columns type:

• integer – 9L

• numeric – 9

• character – "[redacted]"

• POSIXct (date times) – as.POSIXct("1988-10-11T17:00:00", tz = tzone)

Value

data, with the columns specified in columns duly redacted

Examples

if (check_for_pkg("nycflights13", message)) {
small_flights <- head(nycflights13::flights)

with no columns specified, redacting does nothing
redact_columns(small_flights, columns = NULL)

integer
redact_columns(small_flights, columns = c("arr_time"))

numeric
redact_columns(small_flights, columns = c("arr_delay"))

characters
redact_columns(small_flights, columns = c("origin", "dest"))

datetiems
redact_columns(small_flights, columns = c("time_hour"))

}

set_dittodb_debug_level 13

set_dittodb_debug_level

Set dittodb’s debug level

Description

It can be helpful to see what’s going on by increasing dittodb’s verbosity which will show what’s
going on under the hood (e.g. what queries are being requested, from where). This sets the option
dittodb.debug to the value given in the level argument. The option can be set directly with
options(dittodb.debug = n) as well.

Usage

set_dittodb_debug_level(level)

Arguments

level a numeric, the level to set to (e.g. 1)

Details

The level argument is a numeric, where 0 is the default and (relatively) silent. The higher the level,
the more verbose dittodb will be.

Currently, dittodb only has one level of debugging (any value 1 or greater), but more might be
used in the future.

Value

the level, invisibly

Examples

set_dittodb_debug_level(1)
set_dittodb_debug_level(0)

use_dittodb Use dittodb in your tests

Description

If you would like to use dittodb in your package, and you are already using testthat, use this func-
tion to add dittodb to Suggests in the package DESCRIPTION and loads it in tests/testthat/helper.R.
Call it once when you’re setting up a new package test suite.

https://CRAN.R-project.org/package=testthat

14 with_mock_path

Usage

use_dittodb(path = ".")

Arguments

path character path to the package

Details

This function should be called with the path to your package source as the path argument. The
function is idempotent: if dittodb is already added to these files, no additional changes will be
made.

It will:

• add dittodb to the Suggests field of the DESCRIPTION file in the current working directory
• add library(dittodb) to the file tests/testthat/helper.R (creating it if it doesn’t al-

ready exist)

Value

Nothing: called for file system side effects.

Examples

Not run:
use_dittodb()
use_dittodb("/path/to/package")

End(Not run)

with_mock_path Run the DBI queries in an alternate mock directory

Description

When testing with dittodb, wrap your tests in with_mock_path({}) to use the database fixtures
located in other directories. dittodb will look for fixtures in the directory specified by the user,
which can be a temporary or permanent location.

Usage

with_mock_path(path, expr, replace = FALSE)

Arguments

path the alternate directory
expr the expression to execute
replace logical, should the path replace the current mock paths (TRUE) or should they be

appended (to the beginning) of the current mock paths (default, FALSE)

with_mock_path 15

Value

nothing, called to execute the expression(s) in expr

Examples

Only run if RSQLite and testthat are available
if (check_for_pkg("RSQLite", message) & check_for_pkg("testthat", message)) {

with_mock_path(
system.file("nycflight_mocks", package = "dittodb"),
with_mock_db({

con <- DBI::dbConnect(
RSQLite::SQLite(),
dbname = "nycflights"

)

one_airline <- dbGetQuery(
con,
"SELECT carrier, name FROM airlines LIMIT 1"

)
testthat::test_that("We get one airline", {

testthat::expect_s3_class(one_airline, "data.frame")
testthat::expect_equal(nrow(one_airline), 1)
testthat::expect_equal(one_airline$carrier, "9E")
testthat::expect_equal(one_airline$name, "Endeavor Air Inc.")

})
one_airline

})
)

}

Index

capture_db_requests (capture_requests),
2

capture_requests, 2

db_mock_paths, 7
dbBegin,DBIMockConnection-method

(mock-db-methods), 5
dbClearResult,DBIMockResult-method

(mock-db-methods), 5
dbColumnInfo,DBIMockResult-method

(mock-db-methods), 5
dbCommit,DBIMockConnection-method

(mock-db-methods), 5
dbConnect, 7, 8
dbDisconnect,DBIMockConnection-method

(mock-db-methods), 5
dbExistsTable,DBIMockConnection,character-method

(mock-db-methods), 5
dbExistsTable,DBIMockConnection,Id-method

(mock-db-methods), 5
dbFetch,DBIMockResult-method

(mock-db-methods), 5
dbGetInfo, 7
dbGetInfo,DBIMockConnection-method

(mock-db-methods), 5
dbGetInfo,DBIMockResult-method

(mock-db-methods), 5
dbGetQuery,DBIMockRPostgreSQLConnection,character-method

(mock-db-methods), 5
dbGetRowsAffected,DBIMockResult-method

(mock-db-methods), 5
dbHasCompleted,DBIMockResult-method

(mock-db-methods), 5
DBI::dbConnect, 3
DBI::dbGetQuery(), 4
DBI::dbSendQuery(), 4
DBIMockConnection-class

(mock-db-methods), 5
DBIMockResult-class (mock-db-methods), 5
dbListFields, 7

dbListFields,DBIMockConnection,ANY-method
(mock-db-methods), 5

dbListFields,DBIMockConnection,character-method
(mock-db-methods), 5

dbListFields,DBIMockConnection,Id-method
(mock-db-methods), 5

dbListTables,DBIMockConnection-method
(mock-db-methods), 5

dbMockConnect (mock-db-methods), 5
dbQuoteIdentifier, 7
dbQuoteIdentifier,DBIMockRPostgresConnection,character-method

(mock-db-methods), 5
dbQuoteIdentifier,DBIMockRPostgresConnection,SQL-method

(mock-db-methods), 5
dbQuoteString,DBIMockMariaDBConnection,character-method

(mock-db-methods), 5
dbQuoteString,DBIMockMariaDBConnection,SQL-method

(mock-db-methods), 5
dbQuoteString,DBIMockRPostgresConnection,character-method

(mock-db-methods), 5
dbQuoteString,DBIMockRPostgresConnection,SQL-method

(mock-db-methods), 5
dbRemoveTable, 7
dbRemoveTable,DBIMockConnection,character-method

(mock-db-methods), 5
dbRollback,DBIMockConnection-method

(mock-db-methods), 5
dbSendQuery,DBIMockConnection,character-method

(mock-db-methods), 5
dbSendQuery,DBIMockConnection,SQL-method

(mock-db-methods), 5
dbSendStatement,DBIMockConnection,character-method

(mock-db-methods), 5
dbWriteTable, 7
dbWriteTable,DBIMockConnection,character,data.frame-method

(mock-db-methods), 5

expect_sql, 4

fetch,DBIMockResult,ANY-method

16

INDEX 17

(mock-db-methods), 5
fetch,DBIMockResult,missing-method

(mock-db-methods), 5
fetch,DBIMockResult-method

(mock-db-methods), 5

mock-db-methods, 5
mockdb, 7

nycflights13_create_sql, 9, 10
nycflights13_create_sqlite, 10
nycflights_sqlite, 11

redact_columns, 3, 11

set_dittodb_debug_level, 13
start_db_capturing (capture_requests), 2
start_mock_db (mockdb), 7
stop_db_capturing (capture_requests), 2
stop_mock_db (mockdb), 7

testthat::expect_error(), 4

use_dittodb, 13

with_mock_db, 3
with_mock_db (mockdb), 7
with_mock_path, 14

	capture_requests
	expect_sql
	mock-db-methods
	mockdb
	nycflights13_create_sql
	nycflights13_create_sqlite
	nycflights_sqlite
	redact_columns
	set_dittodb_debug_level
	use_dittodb
	with_mock_path
	Index

