--- title: "getCRUCLdata" author: "Adam H. Sparks" date: "2024-12-17" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteEngine{knitr::rmarkdown_notangle} %\VignetteIndexEntry{getCRUCLdata} %\VignetteEncoding{UTF-8} %\VignetteDepends{terra} %\VignetteDepends{ggplot2} %\VignetteDepends{viridis} %\VignetteDepends{data.table} --- ## Introduction to _getCRUCLdata_ The _getCRUCLdata_ package provides functions that automate importing CRU CL v. 2.0 climatology data into R, facilitate the calculation of minimum temperature and maximum temperature, and formats the data into a [base::data.frame()] object or a [base::list()] of [terra::rast()] objects. CRU CL v. 2.0 data are a gridded climatology of 1961-1990 monthly means released in 2002 and cover all land areas (excluding Antarctica) at 10 arcminutes (0.1666667 arc degree) resolution. For more information see the description of the data provided by the University of East Anglia Climate Research Unit (CRU), . ## Changes to original CRU CL v. 2.0 data This package automatically converts elevation values from kilometres to metres. This package crops all spatial outputs to an extent of ymin = -60, ymax = 85, xmin = -180, xmax = 180. Note that the original wind data include land area for parts of Antarctica. # Using _getCRUCLdata_ Logical arguments are used to specify the climatology elements to retrieve and parse. All arguments default to `FALSE`. The `create_CRU_*()` functions require an additional parameter, `dsn` to be provided that states where the files are locally stored. The arguments for selecting the climatology elements for importing are: - **pre** Logical. Fetch precipitation (millimetres/month) from server and return in the data? - **pre_cv** Logical. Fetch cv of precipitation (percent) from server and return in the data? - **rd0** Logical. Fetch wet-days (number days with >0.1 millimetres rain per month) and return in the data? - **dtr** Logical. Fetch mean diurnal temperature range (degrees Celsius) and return it in the data? - **tmp** Logical. Fetch temperature (degrees Celsius) and return it in the data? - **tmn** Logical. Calculate minimum temperature values (degrees Celsius) and return it in the data? - **tmx** Logical. Calculate maximum temperature (degrees Celsius) and return it in the data? - **reh** Logical. Fetch relative humidity and return it in the data? - **sunp** Logical. Fetch sunshine, percent of maximum possible (percent of day length) and return it in data? - **frs** Logical. Fetch ground-frost records (number of days with ground-frost per month) and return it in data? - **wnd** Logical. Fetch 10m wind speed (metres/second) and return it in the data? - **elv** Logical. Fetch elevation (and convert to metres from kilometres) and return it in the data? - **dsn** *For `create_CRU_stack()`* and *`create_CRU_df()`* only. Local file path where CRU CL v. 2.0 .dat.gz files are located. ### Creating data frames for use in R The `get_CRU_df()` function automates the download process and creates data frames of the climatology elements. ``` r library(getCRUCLdata) CRU_data <- get_CRU_df(pre = TRUE, pre_cv = TRUE, rd0 = TRUE, tmp = TRUE, dtr = TRUE, reh = TRUE, tmn = TRUE, tmx = TRUE, sunp = TRUE, frs = TRUE, wnd = TRUE, elv = TRUE) CRU_data #> lat lon month dtr frs pre pre_cv rd0 reh sun tmp wnd elv #> #> 1: 30.917 35.417 NA NA NA NA NA NA NA NA NA -260 #> 2: 31.083 35.417 NA NA NA NA NA NA NA NA NA -361 #> 3: 31.250 35.417 NA NA NA NA NA NA NA NA NA -336 #> 4: 31.417 35.417 NA NA NA NA NA NA NA NA NA -284 #> 5: 31.750 35.583 NA NA NA NA NA NA NA NA NA -248 #> --- #> 6795146: 83.583 -30.083 dec 8.7 31 0.1 72.7 5.1 70.6 0 -31.3 5.6 283 #> 6795147: 83.583 -29.917 dec 8.6 31 0.1 72.8 4.9 70.6 0 -30.7 5.6 186 #> 6795148: 83.583 -29.750 dec 8.6 31 0.1 72.9 4.9 70.6 0 -30.8 5.6 195 #> 6795149: 83.583 -29.583 dec 8.6 31 0.1 73.0 5.0 70.6 0 -31.2 5.6 268 #> 6795150: 83.583 -29.417 dec 8.6 31 0.1 73.1 5.1 70.6 0 -31.5 5.6 328 #> tmx tmn #> #> 1: NA NA #> 2: NA NA #> 3: NA NA #> 4: NA NA #> 5: NA NA #> --- #> 6795146: -26.95 -35.65 #> 6795147: -26.40 -35.00 #> 6795148: -26.50 -35.10 #> 6795149: -26.90 -35.50 #> 6795150: -27.20 -35.80 ``` Perhaps you only need one or two elements, it is easy to create a data frame of mean temperature only. ``` r t <- get_CRU_df(tmp = TRUE) t #> lat lon month tmp #> #> 1: -59.083 -26.583 jan 0.2 #> 2: -58.417 -26.250 jan 0.6 #> 3: -58.417 -26.417 jan 0.4 #> 4: -55.917 -67.250 jan 8.0 #> 5: -55.750 -67.250 jan 8.2 #> --- #> 6795140: 83.583 -36.083 dec -32.6 #> 6795141: 83.583 -36.250 dec -33.0 #> 6795142: 83.583 -36.417 dec -33.4 #> 6795143: 83.583 -36.583 dec -33.3 #> 6795144: 83.583 -36.750 dec -33.3 ``` #### Plotting data from the data frame Now that we have the data, we can plot it easily using _ggplot2_ and the _viridis_ package for the colour scale. ``` r library(ggplot2) library(viridis) ggplot(data = t, aes(x = lon, y = lat, fill = tmp)) + geom_tile() + scale_fill_viridis(option = "inferno") + coord_quickmap() + ggtitle("Global Mean Monthly Temperatures 1961-1990") + facet_wrap( ~ month, nrow = 4) ```
Maps of global temperatures from CRU CL v. 2.0 climatology covering the Earth's surface from ymin = -60, ymax = 85, xmin = -180, xmax = 180 degrees from 1960 to 1991.

Maps of global temperatures from CRU CL v. 2.0 climatology covering the Earth's surface from ymin = -60, ymax = 85, xmin = -180, xmax = 180 degrees from 1960 to 1991.

We can also generate a violin plot of the same data to visualise how the temperatures change throughout the year. ``` r ggplot(data = t, aes(x = month, y = tmp)) + geom_violin() + ylab("Temperature (˚C)") + labs(title = "Global Monthly Mean Land Surface Temperatures From 1960-1991", subtitle = "Excludes Antarctica") ```
Monthly values of global temperatures from CRU CL v. 2.0 climatology covering the Earth's surface from ymin = -60, ymax = 85, xmin = -180, xmax = 180 degrees from 1960 to 1991.

Monthly values of global temperatures from CRU CL v. 2.0 climatology covering the Earth's surface from ymin = -60, ymax = 85, xmin = -180, xmax = 180 degrees from 1960 to 1991.

#### Saving the `data.frame` as a CSV (comma separated values file) locally Save the resulting `data.frame` to local disk as a comma separated (CSV) file to local disk, using _data.table_'s `fwrite()`. ``` r library(data.table) fwrite(x = t, file = "~/CRU_tmp.csv") ``` ### Creating terra raster stacks for use in R and saving for use in another GIS For working with spatial data, _getCRUCLdata_ provides a function that create lists of _terra_ stacks of the data. The `get_CRU_stack()` functions provide similar functionality to `get_CRU_df()`, but rather than returning a data frame, it returns a list of `terra::rast()` objects for use in an R session. The `get_CRU_stack()` function automates the download process and creates a `terra::rast()` object of the CRU CL v. 2.0 climatology elements. Illustrated here is creating a `terra::rast()` of all CRU CL v. 2.0 climatology elements available. ``` r CRU_stack <- get_CRU_stack( pre = TRUE, pre_cv = TRUE, rd0 = TRUE, tmp = TRUE, dtr = TRUE, reh = TRUE, tmn = TRUE, tmx = TRUE, sunp = TRUE, frs = TRUE, wnd = TRUE, elv = TRUE ) CRU_stack #> $dtr #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 2.3, 2.1, 2.2, 2.3, 1.8, 2.5, ... #> max values : 22.7, 23.1, 23.5, 24.0, 24.0, 25.2, ... #> #> $elv #> class : SpatRaster #> dimensions : 870, 2160, 1 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> name : elv #> min value : -361 #> max value : 6486 #> #> $frs #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 0, 0.0, 0, 0, 0, 0, ... #> max values : 31, 28.3, 31, 30, 31, 30, ... #> #> $pre #> class : SpatRaster #> dimensions : 870, 2160, 24 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 0.0, 0.0, 0.0, 0.0, 0, 0.0, ... #> max values : 910.1, 824.3, 727.3, 741.3, 1100, 2512.6, ... #> #> $rd0 #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 0, 0.0, 0, 0, 0.0, 0, ... #> max values : 31, 28.2, 31, 30, 30.7, 30, ... #> #> $reh #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 18.4, 14.6, 13.5, 13.4, 15.5, 10.2, ... #> max values : 100.0, 100.0, 100.0, 100.0, 96.9, 95.1, ... #> #> $sun #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 0.0, 0, 3.3, 4.3, 8.1, 6.6, ... #> max values : 92.8, 93, 90.2, 93.1, 94.0, 98.9, ... #> #> $tmp #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : -51.6, -47.6, -45.2, -36.6, -22.2, -16.3, ... #> max values : 32.5, 32.1, 32.4, 34.3, 36.0, 38.3, ... #> #> $wnd #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : 0.1, 0.1, 0.3, 0.4, 0.3, 0.2, ... #> max values : 9.8, 9.6, 9.4, 9.0, 8.7, 8.6, ... #> #> $tmn #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : -55.05, -52.95, -48.75, -41.35, -28, -21.40, ... #> max values : 26.30, 26.25, 27.40, 27.50, 30, 30.65, ... #> #> $tmx #> class : SpatRaster #> dimensions : 870, 2160, 12 (nrow, ncol, nlyr) #> resolution : 0.1666667, 0.1666667 (x, y) #> extent : -180, 180, -60, 85 (xmin, xmax, ymin, ymax) #> coord. ref. : lon/lat WGS 84 #> source(s) : memory #> names : jan, feb, mar, apr, may, jun, ... #> min values : -48.2, -43.35, -41.65, -32.45, -17.55, -11.50, ... #> max values : 39.7, 38.40, 40.25, 41.85, 43.60, 45.95, ... ``` The `create_CRU_stack()` function works in the same way with only one minor difference. You must supply the location of the files on the local disk (`dsn`) that you wish to import. ``` r t <- create_CRU_stack(tmp = TRUE, dsn = "~/Downloads") ``` #### Plotting terra rast objects of tmin and tmax Because the stacks are in a `list()`, we need to access each element of the list individually to plot them, that's what the `[[1]]` or `[[2]]` is, the first or second element of the list. Here using `[[7]]` we will plot the monthly average minimum temperature for all twelve months. ``` r library(terra) plot(CRU_stack[[7]]) ``` To plot only one month from the stack is also possible. Here we plot maximum temperature for July. Note that we use indexing `[[2]]` as before but append a `$jul` to the object. This is the name of the layer in the `terra::rast()`. So, we are telling R to plot the second object in the `CRU_stack` list, which is `tmx` and from that terra rast, plot only the layer for July. ``` r plot(t[[8]]$jul) ``` #### Saving terra objects to local disk The [terra::rast()] objects can be saved to disk as geotiff files (others are available, see help for `terra::writeRaster()` for more options) on the `Data` directory with a tmn or tmx prefix to the month for a file name. ``` r library(terra) dir.create(file.path("~/Data"), showWarnings = FALSE) writeRaster( t$tmn, filename = file.path("~/Data/tmn_", names(t$tmn)), bylayer = TRUE, format = "GTiff" ) writeRaster( t$tmx, filename = file.path("~/Data/tmx_", names(t$tmn)), bylayer = TRUE, format = "GTiff" ) ``` # CRU CL v. 2.0 reference and abstract Mark New (1,*), David Lister (2), Mike Hulme (3), Ian Makin (4) A high-resolution data set of surface climate over global land areas Climate Research, 2000, Vol 21, pg 1-25 (1) School of Geography and the Environment, University of Oxford, Mansfield Road, Oxford OX1 3TB, United Kingdom (2) Climatic Research Unit, and (3) Tyndall Centre for Climate Change Research, both at School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom (4) International Water Management Institute, PO Box 2075, Colombo, Sri Lanka **ABSTRACT:** We describe the construction of a 10-minute latitude/longitude data set of mean monthly surface climate over global land areas, excluding Antarctica. The climatology includes 8 climate elements - precipitation, wet-day frequency, temperature, diurnal temperature range, relative humidity,sunshine duration, ground frost frequency and windspeed - and was interpolated from a data set of station means for the period centred on 1961 to 1990. Precipitation was first defined in terms of the parameters of the Gamma distribution, enabling the calculation of monthly precipitation at any given return period. The data are compared to an earlier data set at 0.5 degrees latitude/longitude resolution and show added value over most regions. The data will have many applications in applied climatology, biogeochemical modelling, hydrology and agricultural meteorology and are available through the School of Geography Oxford (https://www.geog.ox.ac.uk), the International Water Management Institute "World Water and Climate Atlas" (https://www.iwmi.cgiar.org/) and the Climatic Research Unit (https://www.uea.ac.uk/groups-and-centres/climatic-research-unit).