All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).
We show the performance of computing empirical likelihood with
el_mean()
. We test the computation speed with simulated
data sets in two different settings: 1) the number of observations
increases with the number of parameters fixed, and 2) the number of
parameters increases with the number of observations fixed.
We fix the number of parameters at p = 10, and simulate the parameter
value and n × p
matrices using rnorm()
. In order to ensure convergence with
a large n, we set a large
threshold value using el_control()
.
library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)
Below are the results:
result
#> Unit: microseconds
#> expr min lq mean median uq max
#> n1e2 445.591 482.520 515.6633 499.3265 549.9805 665.060
#> n1e3 1198.074 1405.321 1545.9846 1488.6355 1597.3335 5499.694
#> n1e4 10783.957 12937.993 14705.6650 15065.8505 15934.4450 19893.191
#> n1e5 171542.793 189765.480 231912.0660 224741.4230 256666.6580 380635.069
#> neval cld
#> 100 a
#> 100 a
#> 100 b
#> 100 c
autoplot(result)
This time we fix the number of observations at n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.
n <- 1000
result2 <- microbenchmark(
p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
par = rep(0, 5),
control = ctrl
),
p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
par = rep(0, 25),
control = ctrl
),
p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
par = rep(0, 100),
control = ctrl
),
p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
par = rep(0, 400),
control = ctrl
)
)
result2
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> p5 732.375 772.21 838.1332 797.1365 851.1125 3755.312 100
#> p25 2882.514 2936.23 3067.7938 2966.6315 3032.0030 7546.050 100
#> p100 23318.308 25866.79 29510.7933 26971.0830 30854.6690 165750.865 100
#> p400 266235.449 292424.40 324949.4690 313093.4115 341615.5010 447584.186 100
#> cld
#> a
#> a
#> b
#> c
autoplot(result2)
On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.