Performance

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz).

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at p = 10, and simulate the parameter value and n × p matrices using rnorm(). In order to ensure convergence with a large n, we set a large threshold value using el_control().

library(ggplot2)
library(microbenchmark)
set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
#> Unit: microseconds
#>  expr        min          lq        mean     median          uq        max
#>  n1e2    432.908    468.0285    502.6484    488.326    541.1045    607.955
#>  n1e3   1186.043   1385.8055   1528.8927   1472.957   1610.8800   5345.764
#>  n1e4  10652.955  12883.3465  14523.2540  14932.164  15791.6120  19502.876
#>  n1e5 164353.571 180787.5205 221233.9354 217450.006 245392.9285 366821.921
#>  neval cld
#>    100 a  
#>    100 a  
#>    100  b 
#>    100   c
autoplot(result)

Increasing the number of parameters

This time we fix the number of observations at n = 1000, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
#> Unit: microseconds
#>  expr        min          lq        mean     median         uq        max neval
#>    p5    700.748    751.2215    819.7699    786.943    823.847   3664.406   100
#>   p25   2875.034   2916.1160   3034.6379   2940.622   2995.454   7399.555   100
#>  p100  23292.166  25789.1940  29314.4764  26309.691  30870.084 161506.469   100
#>  p400 265881.448 291839.7285 323676.4462 312389.332 345277.243 447128.858   100
#>  cld
#>  a  
#>  a  
#>   b 
#>    c
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.