
Package: pixelclasser (via r-universe)
November 27, 2024

Type Package

Title Classifies Image Pixels by Colour

Version 1.0.0

Description Contains functions to classify the pixels of an image file
(jpeg or tiff) by its colour. It implements a simple form of
the techniques known as Support Vector Machine adapted to this
particular problem.

Encoding UTF-8

License GPL-3

LazyData true

RoxygenNote 7.1.1

Imports graphics, grDevices, jpeg, tiff,

Suggests knitr, rmarkdown, testthat, covr

VignetteBuilder knitr

URL https://github.com/ropensci/pixelclasser

BugReports https://github.com/ropensci/pixelclasser

Language en-GB

Config/pak/sysreqs libjpeg-dev libtiff-dev

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/pixelclasser

RemoteRef main

RemoteSha e2539ca0ddec965e34003c591cd6d77b040aa260

Contents
classify_pixels . 2
define_cat . 3
define_rule . 5
define_subcat . 6

1

https://github.com/ropensci/pixelclasser
https://github.com/ropensci/pixelclasser

2 classify_pixels

label_rule . 7
pixelclasser . 9
place_rule . 9
plot_pixels . 11
plot_rgb_plane . 12
plot_rule . 13
read_image . 14
save_classif_image . 15

Index 17

classify_pixels Classifies the pixels of an image

Description

Classifies the pixels represented in an object of class transformed_image using the rules contained
in a list of objects of class pixel_cat.

Usage

classify_pixels(image_prop, ..., unclassed_colour = "black", verbose = TRUE)

Arguments

image_prop an array containing the image. It must be an object produced with function
read_image().

... a list of objects of class pixel_cat containing the classification rules.
unclassed_colour

a character string setting the colour to be assigned to unclassified pixels. De-
faults to "black".

verbose a logical value. When TRUE (default) the function prints some statistics about
the classification.

Details

This function generates a set of incidence matrices indicating whether a pixel belongs to a pixel cat-
egory or not. An additional matrix identifies the pixels that do not belong to the defined categories,
i e unclassed pixels. Depending on how the rules were defined, it can be void or contain pixels, but
it is always present and named unclassified.

To create the incidence matrices for each category, a matrix for each rule is created and then com-
bined with the matrices of the other using the and operator.

When a set of subcategories is used, the procedure is the same for each subcategory and then the
matrices of the subcategories are combined again, this time using the or operator. See the help for
define_subcat for more details.

unclassed_colour can be specified in any form understood by grDevices::col2grb.

define_cat 3

Value

Returns an object of class classified_image, which is a list containing nested lists. Each first-
level element corresponds to one of the pixel categories and its name is the category name. They
contains the second-level list, which have the following elements:

• colour: a matrix defining a colour to paint the pixels in the classified image. Inherited from
the pixel_class object defining the class.

• incid_mat: a logical matrix where TRUE values indicate that the pixel belongs to this pixel
category.

See Also

define_cat, col2rgb.

Examples

The series of steps to classify a image supplied in the package

yellow <- "#ffcd0eff"
blue <- "#5536ffff"

ivy_oak_rgb <- read_image(system.file("extdata", "IvyOak400x300.JPG",
package = "pixelclasser"))

rule_01 <- define_rule("rule_01", "g", "b",
list(c(0.345, 1/3), c(0.40, 0.10)), comp_op = "<")

rule_02 <- define_rule("rule_02", "g", "b",
list(c(0.345, 1/3), c(0.40, 0.10)), comp_op = ">=")

cat_dead_leaves <- define_cat("dead_leaves", blue, rule_01)
cat_living_leaves <- define_cat("living_leaves", yellow, rule_02)

ivy_oak_classified <- classify_pixels(ivy_oak_rgb, cat_dead_leaves,
cat_living_leaves)

define_cat Creates a category object

Description

Creates an object of class pixel_cat, which contains a list of objects of class pixel_subcat.

Usage

define_cat(cat_name, cat_colour, ...)

4 define_cat

Arguments

cat_name a character string containing the name of the category.

cat_colour a character string defining the colour to paint the pixels with when creating a
classified picture.

... a list of pixel_subcat objects, or pixel_rule objects in case that subcategories
are not needed. A mixed list of pixel_rule and pixel_subcat objects is not
allowed.

Details

The function receives a list of objects of class pixel_subcat and creates a list of class pixel_cat
with them. However, for cases that does not need subcategories, i e that only need a set of rules,need
a single set of rules, these can be passed to the function, which creates an internal subcategory object
to contain them. See the examples below.

Note that it is an error to pass a mixture of pixel_rule and pixel_subcat objects.

colour can be specified in any form understood by grDevices::col2grb.

Value

A list of class pixel_cat with the following elements:

• name: a character string containing the name of the pixel category.

• colour: a character string describing the colour of the pixels of the category in the classified
images.

• subcats: a list containing the subcategories. Their names are the names of the elements of
the list.

See Also

define_rule, define_subcat, col2rgb

Examples

The rules are not consistent, they are only useful as examples
rule01 <- define_rule("R01", "g", "b",

list(c(0.35, 0.30), c(0.45, 0.10)), ">=")
rule02 <- define_rule("R02", "g", "b",

list(c(0.35, 0.253), c(0.45, 0.253)), ">=")
rule03 <- define_rule("R03", "g", "b",

list(c(0.35, 0.29), c(0.49, 0.178)), ">=")
rule04 <- define_rule("R04", "g", "b",

list(c(0.35, 0.253), c(0.45, 0.253)), "<")

subcat01 <- define_subcat("Subcat01", rule01, rule02)
subcat02 <- define_subcat("Subcat02", rule03, rule04)

cat01 <- define_cat("Cat01", "#ffae2a", subcat01, subcat02)

A single category defined by a set of rules, not subcategories

define_rule 5

cat02 <- define_cat("Cat02", "#00ae2a", rule01, rule02, rule03)

define_rule Creates a rule object

Description

Creates an object of class pixel_rule from a line in rgb space, defined by the user, and a relational
operator.

Usage

define_rule(rule_name, x_axis, y_axis, rule_points, comp_op)

Arguments

rule_name a character string containing the name of the rule.

x_axis a character string selecting the colour variable used as x axis, one of "r", "g" or
"b".

y_axis a character string selecting the colour variable used as y axis, one of "r", "g" or
"b".

rule_points either an object of of class "rule_points" created with function place_rule(),
or a list containing the coordinates of two points defining the line.

comp_op a character string containing one of the comparison operators ">", ">=", "<",
"<=".

Details

This function estimates the slope (a) and intercept (c) of the line y = ax + c using the coordinates
of two points on the line. x and y are two colour variables selected by the user (r, g, or b). The
line divides the plane in two subsets and the comparison operator selects the subset that contains
the points (pixels) of interest.

When a list of two points is passed in rule_points, it is internally converted into an an object of
class rule_points.

The pair of points used to define the line are not constrained to belong to the area occupied by
the pixels, but they are used by plot_rule() as the start and end of the plotted line. Therefore,
the extremes of the line can be selected in the most convenient way, provided that the line divides
correctly the categories. Convenience means that the line should seem nice in the plot, if this
matters.

Because the variables were transformed into proportions, the pixel are always inside the triangle
defined by the points (0, 0), (1, 0), (0, 1). So, the sides of this triangle can be considered as
implicit rules which do not need to be created. In this way, a single line creates two polygons by
cutting the triangle in two. The implicit rules can reduce the number of rules to create in most cases.

6 define_subcat

Value

A list of class pixel_rule containing the following elements:

• rule_name: a character string containing the rule name.

• rule_text: a character string containing the mathematical expression of the rule.

• comp_op: a character string containing the comparison operator used in the rule.

• a: a numerical vector containing the parameter a (slope) of the line.

• c: a numerical vector containing the parameter c (intercept) of the line.

• x_axis: a character string containing the colour variable selected as x axis.

• y_axis: a character string containing the colour variable selected as y axis.

• first_point: a numerical vector containing the coordinates of the first point used to estimate
the line equation.

• second_point: a numerical vector containing the coordinates of the second point.

See Also

define_subcat, define_cat, plot_rule, plot_rgb_plane

Examples

Creating the line by passing the coordinates of two points on the line:
rule01 <- define_rule("rule01", "g", "b",

list(c(0.35, 0.30), c(0.45, 0.10)),">")

A vertical line as a rule; note that the equation is simplified
rule02 <- define_rule("rule02", "g", "b",

list(c(0.35, 0.30), c(0.35, 0.00)), ">")
Not run:
Creating the rule by passing an object of type rule_point:
rule_points01 <- place_rule("g", "b")
rule03 <- define_rule("rule03", "g", "b", rule_points01,">")

Note that the creation of the intermediate object can be avoided:
rule04 <- define_rule("rule04", "g", "b", place_rule("g", "b"),">")

End(Not run)

define_subcat Creates a subcategory object

Description

Creates an object of class pixel_subcat from a list of objects of class pixel_rule.

Usage

define_subcat(subcat_name, ...)

label_rule 7

Arguments

subcat_name a character string containing the name of the subcategory.

... a list of objects of class pixel_rule.

Details

When the shape of the cluster of pixels belonging to one category is not convex, the rules become
inconsistent (the lines cross in awkward ways) and the classification produced is erroneous. To solve
this problem, the complete set of rules is divided into several subsets (subcategories) that break the
original non-convex shape into a set of convex polygons. Note that any polygon can be divided in a
number of triangles, so this problem always has solution. However, in many cases (such as the one
presented in the pixelclasser vignette) a complete triangulation is not needed.

Internally, classify_pixels() classifies the points belonging to each subcategory and then joins
the incidence matrices using the or operator, to create the matrix for the whole category.

Value

An object of class pixel_subcat, which is a list with the following elements:

• name a character string containing the name of the subcategory.

• rules_list a list of pixel_rule objects.

See Also

define_rule, define_cat

Examples

rule01 <- define_rule("R01", "g", "b",
list(c(0.35, 0.30), c(0.45, 0.10)), ">=")

rule02 <- define_rule("R02", "g", "b",
list(c(0.35, 0.253), c(0.45, 0.253)), ">=")

subcat01 <- define_subcat("Subcat_01", rule01, rule02)

label_rule Adds a label to the rule

Description

This function adds a label to the line that represents a rule on a plot created by plot_rgb_plane().

Usage

label_rule(rule, label = "", shift = c(0, 0), ...)

8 label_rule

Arguments

rule an object of class pixel_rule.

label a string to label the line. It is attached at the coordinates of the start (first point)
of the line.

shift a numeric vector to set the displacement of the label from the start of the line.
Expressed in graph units, defaults to c(0, 0).

... additional graphical parameters passed to the underlying graphics::text()
function.

Details

The function uses the information stored in the pixel_rule object to plot the label at the start of the
line. The shift values, expressed in plot coordinates, are added to the coordinates of that point
to place the label elsewhere. Note that . . . can be used to pass values for the adj parameter to the
underlying graphics::text() function, which also modifies the position of the label.

Use a character string understood by grDevices::col2rgb() to set the colour of the label.

Value

The function does not return any value.

See Also

plot_rgb_plane, define_rule, col2rgb, text

Examples

rule_01 <- define_rule("rule_01", "g", "b",
list(c(0.1, 0.8), c(0.40, 0.10)), "<")

plot_rgb_plane("g", "b")

The rule is represented as a green line
plot_rule(rule_01, col = "green")

And the label is added in three different positions by passing col and adj
to the underlying function
label_rule(rule_01, label = expression('R'[1]*''), shift = c(0,0),

col = 'black', adj = 1.5)
label_rule(rule_01, label = expression('R'[1]*''), shift = c(0.2, -0.4),

col = 'blue', adj = 0)
label_rule(rule_01, label = expression('R'[1]*''), shift = c(0.3, -0.7),

col = 'black', adj = -0.5)

pixelclasser 9

pixelclasser pixelclasser: Functions to classify pixels by colour

Description

pixelclasser contains functions to classify the pixels of an image file (in format jpeg or tiff) by
its colour. It uses a simple form of the technique known as Support Vector Machine, adapted to
this particular problem. The original colour variables (R, G, B) are transformed into colour pro-
portions (r, g, b), and the resulting two dimensional plane, defined by any convenient pair of the
transformed variables is divided in several subsets (categories) by one or more straight lines (rules)
selected by the user. Finally, the pixels belonging to each category are identified using the rules,
and a classified image can be created and saved.

Details

To classify the pixels of an image, a series of steps must be done in the following order, using the
functions shown in parenthesis:

• import the image into an R array of transformed (rgb) data (read_image()).

• plot the pixels of the image on the plane of two transformed variables that shows the categories
of pixels most clearly (plot_rgb_plane(), plot_pixels).

• trace lines between the pixel clusters and use them to create classification rules (place_rule(),
define_rule, plot_rule()).

• combine the rules to define categories. Sometimes the rules are combined into subcategories
and these into categories (define_cat(), define_subcat()).

• use the categories to classify the pixels (classify_pixels()).

• save the results of the classification as an image, if needed (save_clasif_image()).

These steps are explained in depth in the vignette included in the package.

Author(s)

Carlos Real (carlos.real@usc.es)

place_rule Places a line on the rgb plot

Description

A wrapper function for graphics::locator that makes the creation of rules easier.

Usage

place_rule(x_axis, y_axis, line_type = "f")

10 place_rule

Arguments

x_axis a character string indicating the colour variable that corresponds to the x axis,
one of "r", "g" or "b".

y_axis a character string indicating the colour variable that corresponds to the y axis,
one of "r", "g" or "b".

line_type a character string indicating that the line is vertical "v", horizontal "h" or free
("f", the default).

Details

This function calls graphics::locator allowing to select two points, plots the line joining these
points and returns a list containing their coordinates. The coordinates are rearranged to pass them
to define_rule().

True horizontal and vertical lines are difficult to create by hand. In these cases, specifying "vertical"
or "horizontal" (partial match allowed, i e "h") will copy the appropriate coordinate value from
the first point to the second. Note that this is done after locator() returns, so the plot will show
the line joining the original points, not the corrected ones. Use plot_rule() to see corrected line.

Value

A list of class rule_points containing the following elements:

• x_axis: a character string containing the colour variable selected as x axis.

• y_axis: a character string containing the colour variable selected as y axis.

• first_point: coordinates of the start point of the line.

• second_point: coordinates of the end point of the line.

See Also

locator, define_rule, plot_rule, plot_rgb_plane

Examples

Not run:
plot_rgb_plane("r", "g")
line01 <- place_rule("r", "g") # A "free" line
line02 <- place_rule("r", "g", "h") # A horizontal line

End(Not run)

plot_pixels 11

plot_pixels Plot the pixels of a transformed image

Description

This function is a wrapper for function points() in package graphics for plotting the pixels of a
transformed rgb image on the triangular diagram previously created by plot_rgb_plane().

Usage

plot_pixels(image_rgb, x_axis, y_axis, ...)

Arguments

image_rgb an object produced by read_image().
x_axis a character string indicating which colour variable use as x.
y_axis a character string indicating which colour variable use as y.
... additional graphical parameters, mainly to set the colour (col) of the points.

Details

It is advantageous to specify a colour such as "#00000005" which is black but almost transparent.
In this way a kind of density plot is created because the clustering of points creates areas of darker
colour. Note that a colour without specific transparency information defaults to an opaque colour, so
"#000000" is the same as "#000000ff". The colours can be specified in any form understandable
by grDevices::col2rgb, but the hexadecimal string allows setting the colour transparency and it
is the preferred style. Note also that the points are plotted using pch = ".", as any other symbol
would clutter the graph.

Warning: plotting several million points in an R graph is a slow process. Be patient or reduce the
size of the images as much as possible. Having a nice smartphone with a petapixel camera sensor
is good for artistic purposes, but not always for efficient scientific work.

Value

The function does not return any value.

See Also

plot_rgb_plane, col2rgb

Examples

Plotting the pixels of the example image included in this package
ivy_oak_rgb <- read_image(system.file("extdata", "IvyOak400x300.JPG",

package = "pixelclasser"))
plot_rgb_plane("g", "b")
plot_pixels(ivy_oak_rgb, "g", "b", col = "#00000005")

12 plot_rgb_plane

plot_rgb_plane Plots a triangular plot to be filled with pixels and rules

Description

Plots a plane of the two variables selected by the user (r, g or b) and, to serve as visual references,
the lines limiting the triangular area that can contain pixels (in blue) and the areas where one of
the colour variables has the larger proportion values (in red). Points representing the pixels of a
transformed image and lines representing the rules can be later added to the plot using functions
plot_pixels() and plot_rule().

Usage

plot_rgb_plane(
x_axis,
y_axis,
plot_limits = TRUE,
plot_guides = TRUE,
plot_grid = TRUE,
...

)

Arguments

x_axis a character string indicating which colour variable use as x.

y_axis a character string indicating which colour variable use as y.

plot_limits a logical value. When TRUE (default) the limits of the area where the pixels can
be found are plotted.

plot_guides a logical value. When TRUE (default) the limits of the area where one variable
dominates are plotted.

plot_grid a logical value; if TRUE (default) a grid is added.

... allows passing graphical parameters to the plotting functions.

Details

Graphical parameters can be passed to the function to modify the appearance of the plot. Intended
for passing xlim and ylim values to plot the part of the graph where the points are concentrated.

Because the variables were transformed into proportions, the pixel are always inside the triangle
defined by the points (0, 0), (1, 0), (0, 1). This triangle is plotted in blue. The point where all
three variables have the same value is (1/3, 1/3). The lines joining this point with the centers of
the triangle sides divide the areas where one of the three variables has higher proportions than the
other two. These lines are plotted as visual aids, so they can be deleted at will.

Value

The function does not return any value.

plot_rule 13

See Also

plot_pixels, plot_rule, define_rule

Examples

Simplest call
plot_rgb_plane("g", "b")

Plane without the red lines
plot_rgb_plane("g", "b", plot_guides = FALSE)

Restricting the plane area to show
plot_rgb_plane("g", "b", xlim = c(0.2, 0.5), ylim = c(0.0, 0.33))

plot_rule Plots the line that defines a rule

Description

This function draws the line that defines a rule on the plot created by plot_rgb_plane().

Usage

plot_rule(rule, label = "", ...)

Arguments

rule an object of class pixel_rule produced by define_rule().

label a string to label the line. It is attached at the coordinates of the second point
used to define the line.

... additional graphical parameters passed to the underlying lines() function, for
example to define the line colour or dashing style. They are also used for the
line label.

Details

The function uses the information stored in the pixel_rule object to plot the line.

Use the . . . to set the colour and other characteristics of the line. Use any character string understood
by col2rgb().

Labels can be added to the rule using label_rule().

Value

The function does not return any value.

14 read_image

See Also

plot_rgb_plane, define_rule, label_rule col2rgb

Examples

rule_01 <- define_rule("rule_01", "g", "b",
list(c(0.345, 1/3), c(0.40, 0.10)), "<")

plot_rgb_plane("g", "b")
plot_rule(rule_01, col = "green")

read_image Imports a jpg or tiff file.

Description

Imports an image file (in JPEG or TIFF format) into an array, and converts the original R, G and B
values in the file into proportions (r, g and b variables).

Usage

read_image(file_name)

Arguments

file_name A character string containing the name of the image file.

Details

This function calls the functions readJPEG() and readTIFF() in packages jpeg and tiff to import
the data into an R array. Then it transforms the data into proportions

Value

Returns an array of dimensions r x c x 3 and class transformed_image, being r and c the number
of rows and columns in the image. The last dimension corresponds to the R, G and B variables (=
bands) that define the colours of the pixels. The values in the array are the proportions of each
colour (r, g, b), i.e. r = R / (R + G + B), and so on.

See Also

For more information about jpeg and tiff file formats, see the help pages of readJPEG and readTIFF
functions in packages jpeg and tiff, respectively.

save_classif_image 15

Examples

An example that loads the example file included in the package
ivy_oak_rgb <- read_image(system.file("extdata", "IvyOak400x300.JPG",

package = "pixelclasser"))

save_classif_image Saves a classified image in TIFF or JPEG format

Description

Creates an image file in TIFF or JPEG format from an array of class classified_image.

Usage

save_classif_image(classified_image, file_name, ...)

Arguments

classified_image

an object of class classified_image.

file_name a character string with the name of the output file, including the extension.

... further parameters to pass to functions writeJPG and writeTIFF. If void, the
default values of these functions are used.

Details

The type of the output file (jpeg or tiff) is selected from the extension included in the file name. It
must be one of ("jpg", "JPG", "jpeg", "JPEG", "tif", "TIF", "tiff", "TIFF").

Note that the default value for jpg quality is 0.7. For maximal quality set quality = 1 using the
. . . argument. Such adjustments are not needed with tiff files, as this is a lossless format.

Value

It does not return anything, only creates the file.

See Also

classify_pixels

For more information about the options for file formatting see see the help pages of readJPEG and
readTIFF functions in packages jpeg and tiff, respectively.

16 save_classif_image

Examples

Not run:

Saving an hypothetical image. Note the use of quality to set the
maximum quality level in the JPEG file
save_classif_image(image01_class, "./myimages/image01_classified.jpg",

quality = 1)

End(Not run)

Index

classify_pixels, 2, 15
col2rgb, 3, 4, 8, 11, 14

define_cat, 3, 3, 6, 7
define_rule, 4, 5, 7, 8, 10, 13, 14
define_subcat, 4, 6, 6

label_rule, 7, 14
locator, 10

pixelclasser, 9
place_rule, 9
plot_pixels, 11, 13
plot_rgb_plane, 6, 8, 10, 11, 12, 14
plot_rule, 6, 10, 13, 13

read_image, 14
readJPEG, 14, 15
readTIFF, 14, 15

save_classif_image, 15

text, 8

17

	classify_pixels
	define_cat
	define_rule
	define_subcat
	label_rule
	pixelclasser
	place_rule
	plot_pixels
	plot_rgb_plane
	plot_rule
	read_image
	save_classif_image
	Index

