The B3 (Brasil, Bolsa, Balcão) provides comprehensive data for its market indices through various endpoints. These indices represent essential benchmarks for the Brazilian financial market, measuring the performance of different market segments.
The rb3
package simplifies access to this data through
four key templates:
b3-indexes-historical-data
: Historical performance data
for B3 indicesb3-indexes-composition
: Composition of all B3 indices
showing which stocks belong to each indexb3-indexes-theoretical-portfolio
: Theoretical portfolio
weights for indices with detailed component weightsb3-indexes-current-portfolio
: Current actual portfolio
with additional sector classification informationThis vignette demonstrates how to retrieve, analyze, and visualize
index data using the rb3
package, featuring examples for
the most popular indices like Ibovespa (IBOV), Small Caps (SMLL), and
Dividend Index (IDIV).
The rb3
package provides a function to retrieve all
available indices from B3:
#> [1] "AGFS" "BDRX" "GPTW" "IBBR" "IBEE" "IBEP"
These codes represent the various indices calculated and published by B3. Some of the most important ones include:
To analyze the historical performance of indices, you can use the
b3-indexes-historical-data
template:
# Download historical data for specific indices across multiple years
fetch_marketdata("b3-indexes-historical-data",
throttle = TRUE,
index = c("IBOV", "SMLL", "IDIV"),
year = 2018:2023
)
After downloading, you can retrieve and analyze the data:
# Get the historical data for analysis
index_history <- indexes_historical_data_get() |>
filter(
symbol %in% c("IBOV", "SMLL", "IDIV"),
refdate >= "2018-01-01"
) |>
collect()
Let’s compare the performance of multiple indices over time:
# Calculate the normalized performance (setting the starting point to 100)
index_performance <- index_history |>
group_by(symbol) |>
arrange(refdate) |>
mutate(
norm_value = value / first(value) * 100
)
# Create the performance chart
ggplot(index_performance, aes(x = refdate, y = norm_value, color = symbol)) +
geom_line(linewidth = 1) +
labs(
title = "Comparative Performance of B3 Indices",
subtitle = "Normalized values (starting at 100)",
x = "Date",
y = "Normalized Value",
color = "Index"
) +
theme_light() +
scale_x_date(date_labels = "%b %Y", date_breaks = "6 months") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Historical Performance of B3 Indices (2018-2023)
This chart shows the relative performance of the selected indices, allowing you to compare their movements regardless of their absolute values.
The b3-indexes-composition
template provides data about
which stocks belong to each index:
After downloading, you can retrieve the composition data:
# Display a subset of the composition data
head(composition)
#> # A tibble: 6 × 3
#> update_date symbol indexes
#> <date> <chr> <chr>
#> 1 2025-04-14 TTEN3 AGFS,IBRA,ICO2,ICON,IGCT,IGCX,IGNM,ITAG,SMLL
#> 2 2025-04-14 ABBV34 BDRX
#> 3 2025-04-14 ABCB4 IBRA,ICO2,IDIV,IFNC,IGCT,IGCX,ITAG,SMLL
#> 4 2025-04-14 ADBE34 BDRX
#> 5 2025-04-14 A1AP34 BDRX
#> 6 2025-04-14 A1MD34 BDRX
You can analyze which stocks appear in multiple key indices:
# Get stocks in specific indices
selected_indices <- c("IBOV", "SMLL", "IDIV")
# Find stocks in each index
stocks_by_index <- lapply(selected_indices, function(idx) {
composition |>
filter(update_date == latest_date, str_detect(indexes, idx)) |>
pull(symbol)
})
names(stocks_by_index) <- selected_indices
# Create a data frame for the Venn diagram visualization
index_overlaps <- data.frame(
Index = c(
"IBOV only", "SMLL only", "IDIV only",
"IBOV & SMLL", "IBOV & IDIV", "SMLL & IDIV",
"All three indices"
),
Count = c(
length(setdiff(setdiff(stocks_by_index$IBOV, stocks_by_index$SMLL), stocks_by_index$IDIV)),
length(setdiff(setdiff(stocks_by_index$SMLL, stocks_by_index$IBOV), stocks_by_index$IDIV)),
length(setdiff(setdiff(stocks_by_index$IDIV, stocks_by_index$IBOV), stocks_by_index$SMLL)),
length(intersect(setdiff(stocks_by_index$IBOV, stocks_by_index$IDIV), stocks_by_index$SMLL)),
length(intersect(setdiff(stocks_by_index$IBOV, stocks_by_index$SMLL), stocks_by_index$IDIV)),
length(intersect(setdiff(stocks_by_index$SMLL, stocks_by_index$IBOV), stocks_by_index$IDIV)),
length(Reduce(intersect, stocks_by_index))
)
)
# Create a bar chart to visualize overlaps
ggplot(index_overlaps, aes(x = reorder(Index, Count), y = Count)) +
geom_bar(stat = "identity", fill = "steelblue") +
coord_flip() +
labs(
title = "Stock Overlap Between Major B3 Indices",
subtitle = paste("As of", latest_date),
x = NULL,
y = "Number of Stocks"
) +
theme_light() +
geom_text(aes(label = Count), hjust = -0.2)
Overlapping Stocks Between Major B3 Indices
You can also determine which indices include a specific stock:
# Find all indices that include a specific stock
find_indices_for_stock <- function(stock_symbol, comp_data, date) {
comp_data |>
filter(update_date == date, symbol == stock_symbol) |>
pull(indexes) |>
str_split(",") |>
unlist() |>
sort()
}
# Example: Find indices containing PETR4
petr4_indices <- find_indices_for_stock("PETR4", composition, latest_date)
#> [1] "IBBR" "IBEE" "IBEW" "IBLV" "IBOV" "IBRA" "IBSD" "IBXL" "IBXX" "IDIV"
#> [11] "IDVR" "IGCT" "IGCX" "ITAG" "MLCX"
The b3-indexes-theoretical-portfolio
template provides
information about the weights of stocks in each index:
# Download theoretical portfolio data
fetch_marketdata("b3-indexes-theoretical-portfolio", index = c("IBOV", "SMLL", "IDIV"))
After downloading, you can retrieve and analyze the portfolio weights:
# Get the theoretical portfolio data
theoretical <- indexes_theoretical_portfolio_get() |>
collect()
# Get the latest date for each index
latest_dates <- theoretical |>
group_by(index) |>
summarise(latest = max(refdate))
You can analyze the top constituents of an index by weight:
# Get the top 10 constituents by weight for IBOV
ibov_top10 <- theoretical |>
filter(index == "IBOV", refdate == latest_dates$latest[latest_dates$index == "IBOV"]) |>
arrange(desc(weight)) |>
slice_head(n = 10)
# Create a bar chart of top constituents
ggplot(ibov_top10, aes(x = reorder(symbol, weight), y = weight)) +
geom_bar(stat = "identity", fill = "darkblue") +
coord_flip() +
labs(
title = "Top 10 Constituents by Weight in Ibovespa",
subtitle = paste("As of", latest_dates$latest[latest_dates$index == "IBOV"]),
x = NULL,
y = "Weight (%)"
) +
theme_light() +
scale_y_continuous(labels = scales::percent) +
geom_text(aes(label = scales::percent(weight, accuracy = 0.01)), hjust = -0.2)
Top 10 Constituents by Weight in Ibovespa
You can compare the concentration of different indices by analyzing their weight distribution:
# Calculate cumulative weights for different indices
concentration_data <- list()
for (idx in c("IBOV", "SMLL", "IDIV")) {
latest <- latest_dates$latest[latest_dates$index == idx]
index_weights <- theoretical |>
filter(index == idx, refdate == latest) |>
arrange(desc(weight))
total_stocks <- nrow(index_weights)
concentration_data[[idx]] <- data.frame(
index = idx,
top_n = c(1, 5, 10, 20, total_stocks),
cum_weight = c(
sum(index_weights$weight[1:1]),
sum(index_weights$weight[1:5]),
sum(index_weights$weight[1:10]),
sum(index_weights$weight[1:20]),
sum(index_weights$weight)
)
)
}
concentration_df <- bind_rows(concentration_data)
# Create a grouped bar chart
concentration_plot <- concentration_df |>
filter(top_n %in% c(1, 5, 10, 20)) |>
mutate(top_n_label = paste("Top", top_n))
ggplot(concentration_plot, aes(x = index, y = cum_weight, fill = factor(top_n))) +
geom_bar(stat = "identity", position = "dodge") +
labs(
title = "Index Concentration Analysis",
subtitle = "Cumulative weight of top constituents",
x = NULL,
y = "Cumulative Weight",
fill = "Number of Stocks"
) +
theme_light() +
scale_y_continuous(labels = scales::percent) +
scale_fill_brewer(palette = "Blues", labels = c("Top 1", "Top 5", "Top 10", "Top 20"))
Weight Concentration in B3 Indices
This chart shows how concentrated each index is, revealing differences in their construction methodology.
The b3-indexes-current-portfolio
template provides the
actual current portfolio with additional sector classification:
# Download current portfolio data
fetch_marketdata("b3-indexes-current-portfolio", index = c("IBOV", "SMLL", "IDIV"))
After downloading, you can retrieve the data:
# Get the current portfolio data
current <- indexes_current_portfolio_get() |>
collect()
# Get the latest date for each index
current_latest <- current |>
group_by(index) |>
summarise(latest = max(refdate))
You can analyze the sector composition of different indices:
# Create sector breakdown for each index
sector_data <- list()
for (idx in c("IBOV", "SMLL", "IDIV")) {
latest <- current_latest$latest[current_latest$index == idx]
sector_data[[idx]] <- current |>
filter(index == idx, refdate == latest) |>
group_by(sector) |>
summarise(weight = sum(weight)) |>
arrange(desc(weight)) |>
mutate(index = idx)
}
sector_df <- bind_rows(sector_data)
# Create a grouped bar chart for sector comparison
ggplot(sector_df, aes(x = index, y = weight, fill = sector)) +
geom_bar(stat = "identity") +
labs(
title = "Sector Composition of B3 Indices",
subtitle = paste("As of", format(max(current_latest$latest), "%b %Y")),
x = NULL,
y = "Weight",
fill = "Sector"
) +
theme_light() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
theme(legend.position = "bottom", legend.box = "horizontal")
Sector Breakdown of B3 Indices
This visualization shows how sector exposure varies across different indices, which is important for diversification analysis.
You can create helper functions to streamline common tasks:
# Function to get assets in specific indices
indexes_assets_by_indexes <- function(index_list) {
last_date <- indexes_composition_get() |>
summarise(update_date = max(update_date)) |>
collect() |>
pull(update_date)
x <- lapply(index_list, function(idx) {
indexes_composition_get() |>
filter(update_date == last_date, str_detect(indexes, idx)) |>
select(symbol) |>
collect() |>
pull(symbol)
})
stats::setNames(x, index_list)
}
# Function to find which indices contain specific assets
indexes_indexes_by_assets <- function(symbols) {
last_date <- indexes_composition_get() |>
summarise(update_date = max(update_date)) |>
collect() |>
pull(update_date)
indexes_composition_get() |>
filter(update_date == last_date, symbol %in% symbols) |>
select(symbol, indexes) |>
collect() |>
mutate(
indexes_list = str_split(indexes, ",")
)
}
You can calculate various performance metrics for the indices:
# Calculate monthly returns
monthly_returns <- index_history |>
group_by(symbol) |>
arrange(refdate) |>
mutate(
year_month = floor_date(refdate, "month"),
monthly_return = value / lag(value) - 1
) |>
filter(!is.na(monthly_return)) |>
group_by(symbol, year_month) |>
summarise(
monthly_return = last(monthly_return),
.groups = "drop"
)
# Visualize the monthly returns
ggplot(monthly_returns, aes(x = year_month, y = monthly_return, fill = symbol)) +
geom_bar(stat = "identity", position = "dodge") +
facet_wrap(~symbol, ncol = 1) +
labs(
title = "Monthly Returns of B3 Indices",
x = NULL,
y = "Monthly Return"
) +
theme_light() +
scale_y_continuous(labels = scales::percent) +
theme(legend.position = "none")
Monthly Returns of B3 Indices
You can calculate summary statistics to compare the performance of different indices:
# Calculate annualized summary statistics
performance_summary <- monthly_returns |>
group_by(symbol) |>
summarise(
Mean = mean(monthly_return, na.rm = TRUE),
Median = median(monthly_return, na.rm = TRUE),
Std.Dev = sd(monthly_return, na.rm = TRUE),
Min = min(monthly_return, na.rm = TRUE),
Max = max(monthly_return, na.rm = TRUE),
Positive = mean(monthly_return > 0, na.rm = TRUE)
) |>
mutate(
Annualized.Return = (1 + Mean)^12 - 1,
Annualized.Volatility = Std.Dev * sqrt(12),
Sharpe = Annualized.Return / Annualized.Volatility
)
# Display the summary statistics
performance_summary |>
select(symbol, Annualized.Return, Annualized.Volatility, Sharpe, Positive) |>
mutate(
Annualized.Return = scales::percent(Annualized.Return, accuracy = 0.01),
Annualized.Volatility = scales::percent(Annualized.Volatility, accuracy = 0.01),
Sharpe = round(Sharpe, 2),
Positive = scales::percent(Positive, accuracy = 0.1)
) |>
rename(
Index = symbol,
`Ann. Return` = Annualized.Return,
`Ann. Volatility` = Annualized.Volatility,
`Sharpe Ratio` = Sharpe,
`% Positive Months` = Positive
)
#> # A tibble: 3 × 5
#> Index `Ann. Return` `Ann. Volatility` `Sharpe Ratio` `% Positive Months`
#> <chr> <chr> <chr> <dbl> <chr>
#> 1 IBOV -3.54% 4.60% -0.77 41.7%
#> 2 IDIV -2.18% 4.01% -0.55 47.2%
#> 3 SMLL -1.45% 5.17% -0.28 47.2%
This vignette demonstrated how to work with B3 index data using the
rb3
package. We covered:
indexes_get()
to list all available B3 indices.b3-indexes-historical-data
to analyze and visualize index
performance over time.b3-indexes-composition
to understand which stocks belong to
each index.b3-indexes-theoretical-portfolio
to analyze the weights and
concentration of indices.b3-indexes-current-portfolio
to analyze sector allocation
within indices.The combination of these four templates provides a comprehensive toolkit for analyzing the Brazilian equity market through its indices, suitable for investors, researchers, and analysts.
For more advanced analyses, you might consider: