A benchmark can reveal how many route gradients can be calculated per second:
e = dem_lisbon_raster
r = lisbon_road_network
et = terra::rast(e)
res = bench::mark(check = FALSE,
slope_raster = slope_raster(r, e),
slope_terra = slope_raster(r, et)
)res
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 slope_raster 45.1ms 45.3ms 21.0 16.24MB 7.87
#> 2 slope_terra 43.1ms 43.4ms 23.0 1.96MB 11.5That is approximately
routes per second using the raster and
terra (the default if installed, using
RasterLayer and native SpatRaster objects)
packages to extract elevation estimates from the raster datasets,
respectively.
The message: use the terra package to read-in DEM data
for slope extraction if speed is important.
To go faster, you can chose the simple method to gain
some speed at the expense of accuracy:
e = dem_lisbon_raster
r = lisbon_road_network
res = bench::mark(check = FALSE,
bilinear1 = slope_raster(r, e),
bilinear2 = slope_raster(r, et),
simple1 = slope_raster(r, e, method = "simple"),
simple2 = slope_raster(r, et, method = "simple")
)res
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 bilinear1 44.5ms 45.5ms 21.8 5.28MB 8.19
#> 2 bilinear2 43.6ms 44ms 22.6 1.86MB 8.48
#> 3 simple1 36.7ms 36.9ms 26.8 1.97MB 11.9
#> 4 simple2 38.4ms 38.7ms 25.7 1.98MB 7.72