
Package: spatsoc (via r-universe)
December 9, 2024

Title Group Animal Relocation Data by Spatial and Temporal
Relationship

Version 0.2.8

Description Detects spatial and temporal groups in GPS relocations
(Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It
can be used to convert GPS relocations to gambit-of-the-group
format to build proximity-based social networks In addition,
the randomizations function provides data-stream randomization
methods suitable for GPS data.

License GPL-3 | file LICENSE

URL https://docs.ropensci.org/spatsoc/,

https://github.com/ropensci/spatsoc

BugReports https://github.com/ropensci/spatsoc/issues

Depends R (>= 3.4)

Imports adehabitatHR (>= 0.4.21), data.table (>= 1.15.0), igraph, sf,
lwgeom, CircStats, stats, units

Suggests asnipe, knitr, markdown, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

SystemRequirements GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0),
sqlite3

Remotes r-quantities/units@889cf39

Config/pak/sysreqs libgdal-dev gdal-bin libgeos-dev libglpk-dev
libxml2-dev libssl-dev libproj-dev libsqlite3-dev
libudunits2-dev

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/spatsoc

RemoteRef main

RemoteSha f4dbe2c1c1a6c6035c8a44051afe6c1553c5ad51

1

https://doi.org/10.1111/2041-210X.13215
https://docs.ropensci.org/spatsoc/
https://github.com/ropensci/spatsoc
https://github.com/ropensci/spatsoc/issues

2 build_lines

Contents
build_lines . 2
build_polys . 4
centroid_dyad . 6
centroid_fusion . 9
centroid_group . 11
diff_rad . 12
direction_group . 13
direction_polarization . 15
direction_step . 16
direction_to_centroid . 19
direction_to_leader . 20
distance_to_centroid . 22
distance_to_leader . 24
DT . 26
dyad_id . 27
edge_delay . 28
edge_dist . 30
edge_nn . 32
fusion_id . 35
get_gbi . 37
group_lines . 38
group_polys . 41
group_pts . 43
group_times . 45
leader_direction_group . 47
randomizations . 49

Index 53

build_lines Build Lines

Description

build_lines generates a simple feature collection with LINESTRINGs from a data.table. The
function expects a data.table with relocation data, individual identifiers, a sorting column and
a projection. The relocation data is transformed into LINESTRINGs for each individual and,
optionally, combination of columns listed in splitBy. Relocation data should be in two columns
representing the X and Y coordinates.

Usage

build_lines(
DT = NULL,
projection = NULL,
id = NULL,

build_lines 3

coords = NULL,
sortBy = NULL,
splitBy = NULL

)

Arguments

DT input data.table

projection numeric or character defining the coordinate reference system to be passed to
sf::st_crs. For example, either projection = "EPSG:32736" or projection =
32736.

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

sortBy Character string of date time column(s) to sort rows by. Must be a POSIXct.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

Details

R-spatial evolution:
Please note, spatsoc has followed updates from R spatial, GDAL and PROJ for handling projec-
tions, see more at https://r-spatial.org/r/2020/03/17/wkt.html.
In addition, build_lines previously used sp::SpatialLines but has been updated to use sf::st_as_sf
and sf::st_linestring according to the R-spatial evolution, see more at https://r-spatial.org/
r/2022/04/12/evolution.html.

Notes on arguments:
The projection argument expects a numeric or character defining the coordinate reference sys-
tem. For example, for UTM zone 36N (EPSG 32736), the projection argument is either projection
= 'EPSG:32736' or projection = 32736. See details in sf::st_crs() and https://spatialreference.
org for a list of EPSG codes.
The sortBy argument is used to order the input DT when creating sf LINESTRINGs. It must a
column in the input DT of type POSIXct to ensure the rows are sorted by date time.
The splitBy argument offers further control building LINESTRINGs. If in your input DT, you
have multiple temporal groups (e.g.: years) for example, you can provide the name of the column
which identifies them and build LINESTRINGs for each individual in each year.
build_lines is used by group_lines for grouping overlapping lines generated from relocations.

Value

build_lines returns an sf LINESTRING object with a line for each individual (and optionally
splitBy combination).

Individuals (or combinations of individuals and splitBy) with less than two relocations are dropped
since it requires at least two relocations to build a line.

https://r-spatial.org/r/2020/03/17/wkt.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://spatialreference.org
https://spatialreference.org

4 build_polys

See Also

group_lines

Other Build functions: build_polys()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- 32736

Build lines for each individual
lines <- build_lines(DT, projection = utm, id = 'ID', coords = c('X', 'Y'),

sortBy = 'datetime')

Build lines for each individual by year
DT[, yr := year(datetime)]
lines <- build_lines(DT, projection = utm, id = 'ID', coords = c('X', 'Y'),

sortBy = 'datetime', splitBy = 'yr')

build_polys Build Polygons

Description

build_polys generates a simple feature collection with POLYGONs from a data.table. The
function expects a data.table with relocation data, individual identifiers, a projection, home
range type and parameters. The relocation data is transformed into POLYGONs using either ade-
habitatHR::mcp or adehabitatHR::kernelUD for each individual and, optionally, combination of
columns listed in splitBy. Relocation data should be in two columns representing the X and Y
coordinates.

Usage

build_polys(
DT = NULL,
projection = NULL,
hrType = NULL,
hrParams = NULL,
id = NULL,

build_polys 5

coords = NULL,
splitBy = NULL,
spPts = NULL

)

Arguments

DT input data.table

projection numeric or character defining the coordinate reference system to be passed to
sf::st_crs. For example, either projection = "EPSG:32736" or projection =
32736.

hrType type of HR estimation, either ’mcp’ or ’kernel’

hrParams a named list of parameters for adehabitatHR functions

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

spPts alternatively, provide solely a SpatialPointsDataFrame with one column repre-
senting the ID of each point, as specified by adehabitatHR::mcp or adehabi-
tatHR::kernelUD

Details

group_polys uses build_polys for grouping overlapping polygons created from relocations.

R-spatial evolution:
Please note, spatsoc has followed updates from R spatial, GDAL and PROJ for handling projec-
tions, see more below and details at https://r-spatial.org/r/2020/03/17/wkt.html.
In addition, build_polys previously used sp::SpatialPoints but has been updated to use sf::st_as_sf
according to the R-spatial evolution, see more at https://r-spatial.org/r/2022/04/12/evolution.
html.

Notes on arguments:
The DT must be a data.table. If your data is a data.frame, you can convert it by reference
using data.table::setDT.
The id, coords (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, X and Y coordinates, and additional grouping
columns.
The projection argument expects a character string or numeric defining the coordinate refer-
ence system to be passed to sf::st_crs. For example, for UTM zone 36S (EPSG 32736), the
projection argument is projection = "EPSG:32736" or projection = 32736. See https://
spatialreference.org for a list of EPSG codes.
The hrType must be either one of "kernel" or "mcp". The hrParams must be a named list of
arguments matching those of adehabitatHR::kernelUD and adehabitatHR::getverticeshr or ade-
habitatHR::mcp.

https://r-spatial.org/r/2020/03/17/wkt.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://spatialreference.org
https://spatialreference.org

6 centroid_dyad

The splitBy argument offers further control building POLYGONs. If in your DT, you have mul-
tiple temporal groups (e.g.: years) for example, you can provide the name of the column which
identifies them and build POLYGONs for each individual in each year.

Value

build_polys returns a simple feature collection with POLYGONs for each individual (and option-
ally splitBy combination).

An error is returned when hrParams do not match the arguments of the respective hrType adehabitatHR
function.

See Also

group_polys

Other Build functions: build_lines()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- 32736

Build polygons for each individual using kernelUD and getverticeshr
build_polys(DT, projection = utm, hrType = 'kernel',

hrParams = list(grid = 60, percent = 95),
id = 'ID', coords = c('X', 'Y'))

Build polygons for each individual by year
DT[, yr := year(datetime)]
build_polys(DT, projection = utm, hrType = 'mcp',

hrParams = list(percent = 95),
id = 'ID', coords = c('X', 'Y'), splitBy = 'yr')

centroid_dyad Dyad centroid

centroid_dyad 7

Description

centroid_dyad calculates the centroid (mean location) of a dyad in each observation identified by
edge_nn or edge_dist. The function accepts an edge list generated by edge_nn or edge_dist and
a data.table with relocation data appended with a timegroup column from group_times. It is
recommended to use the argument fillNA = FALSE for edge_dist when using centroid_dyad to
avoid unnecessarily merging additional rows. Relocation data should be in two columns represent-
ing the X and Y coordinates.

Usage

centroid_dyad(
edges = NULL,
DT = NULL,
id = NULL,
coords = NULL,
timegroup = "timegroup",
na.rm = FALSE

)

Arguments

edges edge list generated generated by edge_dist or edge_nn, with dyad ID column
generated by dyad_id

DT input data.table with timegroup column generated with group_times matching
the input data.table used to generate the edge list with edge_nn or edge_dist

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

na.rm if NAs should be removed in calculating mean location, see rowMeans

Details

The edges and DT must be data.table. If your data is a data.frame, you can convert it by
reference using data.table::setDT or by reassigning using data.table::data.table.

The edges and DT are internally merged in this function using the columns id, dyadID and timegroup.
This function expects a dyadID present, generated with the dyad_id function. The dyadID and
timegroup arguments expect the names of a column in edges which correspond to the dyadID and
timegroup columns. The id and timegroup arguments expect the names of a column in DT which
correspond to the X and Y coordinates and group columns. The na.rm argument is passed to the
rowMeans function to control if NA values are removed before calculation.

Value

centroid_dyad returns the input edges appended with centroid columns for the X and Y coordinate
columns.

8 centroid_dyad

These columns represents the centroid coordinate columns for the dyad. The naming of these
columns will correspond to the provided coordinate column names prefixed with "centroid_".

Note: due to the merge required within this function, the output needs to be reassigned unlike some
other spatsoc functions like dyad_id and group_pts.

A message is returned when centroid columns are already exists in the input edges, because they
will be overwritten.

See Also

dyad_id edge_dist edge_nn group_pts

Other Centroid functions: centroid_fusion(), centroid_group()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = FALSE

)

Generate dyad id
dyad_id(edges, id1 = 'ID1', id2 = 'ID2')

Calculate dyad centroid
centroids <- centroid_dyad(

edges,
DT,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup', na.rm = TRUE

)

print(centroids)

centroid_fusion 9

centroid_fusion Fusion centroid

Description

centroid_fusion calculates the centroid (mean location) of each timestep in fusion events. The
function accepts an edge list of fusion events identified by fusion_id from edge lists generated
with edge_dist and a data.table with relocation data appended with a timegroup column from
group_times. It is recommended to use the argument fillNA = FALSE for edge_dist when using
centroid_fusion to avoid unnecessarily merging additional rows. Relocation data should be in
two columns representing the X and Y coordinates.

Usage

centroid_fusion(
edges = NULL,
DT = NULL,
id = NULL,
coords = NULL,
timegroup = "timegroup",
na.rm = FALSE

)

Arguments

edges edge list generated generated by edge_dist or edge_nn, with fusionID column
generated by fusion_id

DT input data.table with timegroup column generated with group_times matching
the input data.table used to generate the edge list with edge_nn or edge_dist

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

na.rm if NAs should be removed in calculating mean location, see rowMeans

Details

The edges and DT must be data.table. If your data is a data.frame, you can convert it by
reference using data.table::setDT or by reassigning using data.table::data.table.

The edges and DT are internally merged in this function using the columns timegroup (from
group_times) and ID1 and ID2 (in edges, from dyad_id) and id (in DT). This function expects
a fusionID present, generated with the fusion_id function. The timegroup argument expects
the names of a column in edges which correspond to the timegroup column. The id, coords and
timegroup arguments expect the names of a column in DT which correspond to the id, X and Y
coordinates and timegroup columns. The na.rm argument is passed to the rowMeans function to
control if NA values are removed before calculation.

10 centroid_fusion

Value

centroid_fusion returns the input edges appended with centroid columns for the X and Y coor-
dinate columns.

These columns represents the centroid coordinate columns for each timestep in a fusion event. The
naming of these columns will correspond to the provided coordinate column names prefixed with
"centroid_".

Note: due to the merge required within this function, the output needs to be reassigned unlike some
other spatsoc functions like fusion_id and group_pts.

A message is returned when centroid columns are already exists in the input edges, because they
will be overwritten.

See Also

fusion_id edge_dist group_pts

Other Centroid functions: centroid_dyad(), centroid_group()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = FALSE

)

Generate dyad id
dyad_id(edges, id1 = 'ID1', id2 = 'ID2')

Generate fusion id
fusion_id(edges, threshold = 100)

Calculate fusion centroid
centroids <- centroid_fusion(

centroid_group 11

edges,
DT,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup', na.rm = TRUE

)

print(centroids)

centroid_group Group centroid

Description

centroid_group calculates the centroid (mean location) of all individuals in each spatiotemporal
group identified by group_pts. The function accepts a data.table with relocation data appended
with a group column from group_pts. Relocation data should be in two columns representing the
X and Y coordinates.

Usage

centroid_group(DT = NULL, coords = NULL, group = "group", na.rm = FALSE)

Arguments

DT input data.table with group column generated with group_pts

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

group Character string of group column

na.rm if NAs should be removed in calculating mean location, see mean

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The coords and group arguments expect the names of a column in DT which correspond to the
X and Y coordinates and group columns. The na.rm argument is passed to the mean function to
control if NA values are removed before calculation.

Value

centroid_group returns the input DT appended with centroid columns for the X and Y coordinate
columns.

These columns represents the centroid coordinate columns. The naming of these columns will
correspond to the provided coordinate column names prefixed with "centroid_".

A message is returned when centroid columns are already exists in the input DT, because they will
be overwritten.

12 diff_rad

See Also

group_pts

Other Centroid functions: centroid_dyad(), centroid_fusion()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'), group = 'group', na.rm = TRUE)

diff_rad Difference of two angles measured in radians

Description

Internal function

Usage

diff_rad(x, y, signed = FALSE, return_units = FALSE)

Arguments

x angle in radians
y angle in radians
signed boolean if signed difference should be returned, default FALSE
return_units return difference with units = ’rad’

Value

Difference between x and y in radians. If signed is TRUE, the signed difference is returned. If
signed is FALSE, the absolute difference is returned. Note: The difference is the smallest difference,
eg.

direction_group 13

References

adapted from https://stackoverflow.com/a/7869457

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Set order using data.table::setorder
setorder(DT, datetime)

Calculate direction
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Differences
spatsoc:::diff_rad(DT[1, direction], DT[2, direction])

direction_group Group mean direction

Description

direction_group calculates the mean direction of all individuals in each spatiotemporal group
identified by group_pts. The function accepts a data.table with relocation data appended with a
direction column from direction_step and a group column from group_pts.

Usage

direction_group(DT, direction = "direction", group = "group")

Arguments

DT input data.table with direction column generated by direction_step and group
column generated with group_pts

direction character string of direction column name, default "direction"

group character string of group column name, default "group"

14 direction_group

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The direction and group arguments expect the names of columns in DT which correspond to the
direction and group columns. The direction column is expected in units of radians and the mean
calculated with CircStats::circ.mean().

Value

direction_group returns the input DT appended with a group_direction column representing
the mean direction of all individuals in each spatiotemporal group.

The mean direction is calculated using CircStats::circ.mean() which expects units of radians.

A message is returned when the group_direction columns already exists in the input DT, because
it will be overwritten.

References

See examples of using mean group direction:

• https://doi.org/10.1098/rsos.170148

• https://doi.org/10.1098/rsos.201128

• https://doi.org/10.1016/j.beproc.2018.01.013

See Also

direction_step, group_pts, CircStats::circ.mean()

Other Direction functions: direction_polarization(), direction_step(), direction_to_leader(),
edge_delay()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate direction at each step

https://doi.org/10.1098/rsos.170148
https://doi.org/10.1098/rsos.201128
https://doi.org/10.1016/j.beproc.2018.01.013

direction_polarization 15

direction_step(
DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Calculate group direction
direction_group(DT)

direction_polarization

Polarization

Description

direction_polarization calculates the polarization of individual directions in each spatiotem-
poral group identified by group_pts. The function expects a data.table with relocation data
appended with a direction column from direction_step and a group column from group_pts.

Usage

direction_polarization(DT, direction = "direction", group = "group")

Arguments

DT input data.table with direction column generated by direction_step and group
column generated with group_pts

direction character string of direction column name, default "direction"

group character string of group column name, default "group"

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The direction and group arguments expect the names of columns in DT which correspond to
the direction and group columns. The direction column is expected in units of radians and the
polarization is calculated with CircStats::r.test().

Value

direction_polarization returns the input DT appended with a polarization column represent-
ing the direction polarization of all individuals in each spatiotemporal group.

The direction polarization is calculated using CircStats::r.test() which expects units of radi-
ans.

A message is returned when the polarization columns already exists in the input DT, because it
will be overwritten.

16 direction_step

References

See examples of using polarization:

• https://doi.org/10.1016/j.cub.2017.08.004

• https://doi.org/10.1371/journal.pcbi.1009437

• https://doi.org/10.7554/eLife.19505

See Also

direction_step, group_pts, CircStats::r.test()

Other Direction functions: direction_group(), direction_step(), direction_to_leader(),
edge_delay()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate direction at each step
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Calculate polarization
direction_polarization(DT)

direction_step Calculate direction at each step

https://doi.org/10.1016/j.cub.2017.08.004
https://doi.org/10.1371/journal.pcbi.1009437
https://doi.org/10.7554/eLife.19505

direction_step 17

Description

direction_step calculates the direction of movement steps in radians. The function accepts a
data.table with relocation data and individual identifiers. Relocation data should be in two
columns representing the X and Y coordinates. Note the order of rows is not modified by this
function and therefore users must be cautious to set it explicitly. See example for one approach to
setting order of rows using a datetime field.

Usage

direction_step(
DT = NULL,
id = NULL,
coords = NULL,
projection = NULL,
splitBy = NULL

)

Arguments

DT input data.table

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

projection numeric or character defining the coordinate reference system to be passed to
sf::st_crs. For example, either projection = "EPSG:32736" or projection =
32736.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The id, coords, and optional splitBy arguments expect the names of a column in DT which corre-
spond to the individual identifier, X and Y coordinates, and additional grouping columns.

The projection argument expects a character string or numeric defining the coordinate reference
system to be passed to sf::st_crs. For example, for UTM zone 36S (EPSG 32736), the projection ar-
gument is projection = "EPSG:32736" or projection = 32736. See https://spatialreference.
org for #’ a list of EPSG codes.

The splitBy argument offers further control over grouping. If within your DT, you have distinct
sampling periods for each individual, you can provide the column name(s) which identify them to
splitBy. The direction calculation by direction_step will only consider rows within each id
and splitBy subgroup.

https://spatialreference.org
https://spatialreference.org

18 direction_step

Value

direction_step returns the input DT appended with a direction column with units set to radians
using the units package.

This column represents the azimuth between the sequence of points for each individual computed
using lwgeom::st_geod_azimuth. Note, the order of points is not modified by this function
and therefore it is crucial the user sets the order of rows to their specific question before using
direction_step. In addition, the direction column will include an NA value for the last point in
each sequence of points since there is no future point to calculate a direction to.

A message is returned when a direction column are already exists in the input DT, because it will be
overwritten.

See Also

amt::direction_abs(), geosphere::bearing()

Other Direction functions: direction_group(), direction_polarization(), direction_to_leader(),
edge_delay()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Set order using data.table::setorder
setorder(DT, datetime)

Calculate direction
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Example result for East, North, West, South steps
example <- data.table(

X = c(0, 5, 5, 0, 0),
Y = c(0, 0, 5, 5, 0),
step = c('E', 'N', 'W', 'S', NA),
ID = 'A'

)

direction_step(example, 'ID', c('X', 'Y'), projection = 4326)
example[, .(direction, units::set_units(direction, 'degree'))]

direction_to_centroid 19

direction_to_centroid Direction to group centroid

Description

direction_to_centroid calculates the direction of each relocation to the centroid of the spa-
tiotemporal group identified by group_pts. The function accepts a data.table with relocation
data appended with a group column from group_pts and centroid columns from centroid_group.
Relocation data should be in planar coordinates provided in two columns representing the X and Y
coordinates.

Usage

direction_to_centroid(DT = NULL, coords = NULL)

Arguments

DT input data.table with centroid columns generated by eg. centroid_group
coords character vector of X coordinate and Y coordinate column names. Note: the

order is assumed X followed by Y column names.

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

This function expects a group column present generated with the group_pts function and centroid
coordinate columns generated with the centroid_group function. The coords and group argu-
ments expect the names of columns in DT which correspond to the X and Y coordinates and group
columns.

Value

direction_to_centroid returns the input DT appended with a direction_centroid column in-
dicating the direction to group centroid in radians. The direction is measured in radians in the range
of 0 to 2 * pi from the positive x-axis.

A message is returned when direction_centroid column already exist in the input DT, because
they will be overwritten.

References

See example of using direction to group centroid:

• https://doi.org/10.1016/j.cub.2017.08.004

See Also

centroid_group, group_pts

Other Distance functions: distance_to_centroid(), distance_to_leader()

https://doi.org/10.1016/j.cub.2017.08.004

20 direction_to_leader

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'), group = 'group', na.rm = TRUE)

Calculate direction to group centroid
direction_to_centroid(DT, coords = c('X', 'Y'))

direction_to_leader Direction to group leader

Description

direction_to_leader calculates the direction to the leader of each spatiotemporal group. The
function accepts a data.table with relocation data appended with a rank_position_group_direction
column indicating the ranked position along the group direction generated with leader_direction_group(return_rank
= TRUE). Relocation data should be in planar coordinates provided in two columns representing the
X and Y coordinates.

Usage

direction_to_leader(DT = NULL, coords = NULL, group = "group")

Arguments

DT input data.table with ’rank_position_group_direction’ column generated by leader_direction_group
and group column generated by group_pts

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

group group column name, generated by group_pts, default ’group’

direction_to_leader 21

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

This function expects a rank_position_group_direction column generated with leader_direction_group(return_rank
= TRUE), a group column generated with the group_pts function. The coords and group argu-
ments expect the names of columns in DT which correspond to the X and Y coordinates and group
columns.

Value

direction_to_leader returns the input DT appended with a direction_leader column indicating
the direction to the group leader.

A message is returned when the direction_leader column is already exist in the input DT because
it will be overwritten.

References

See examples of using direction to leader and position within group:

• https://doi.org/10.1016/j.anbehav.2023.09.009

• https://doi.org/10.1016/j.beproc.2013.10.007

• https://doi.org/10.1371/journal.pone.0036567

See Also

distance_to_leader, leader_direction_group, group_pts

Other Direction functions: direction_group(), direction_polarization(), direction_step(),
edge_delay()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

(Subset example data to reduce example run time)
DT <- DT[year(datetime) == 2016]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',

https://doi.org/10.1016/j.anbehav.2023.09.009
https://doi.org/10.1016/j.beproc.2013.10.007
https://doi.org/10.1371/journal.pone.0036567

22 distance_to_centroid

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate direction at each step
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'))

Calculate group direction
direction_group(DT)

Calculate leader in terms of position along group direction
leader_direction_group(

DT,
coords = c('X', 'Y'),
return_rank = TRUE

)

Calculate direction to leader
direction_to_leader(DT, coords = c('X', 'Y'))

distance_to_centroid Distance to group centroid

Description

distance_to_centroid calculates the distance of each relocation to the centroid of the spatiotem-
poral group identified by group_pts. The function accepts a data.table with relocation data
appended with a group column from group_pts and centroid columns from centroid_group. Re-
location data should be in planar coordinates provided in two columns representing the X and Y
coordinates.

Usage

distance_to_centroid(
DT = NULL,
coords = NULL,
group = "group",
return_rank = FALSE,
ties.method = NULL

)

distance_to_centroid 23

Arguments

DT input data.table with centroid columns generated by eg. centroid_group

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

group group column name, generated by group_pts, default ’group’

return_rank boolean if rank distance should also be returned, default FALSE

ties.method see ?data.table::frank

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

This function expects a group column present generated with the group_pts function and centroid
coordinate columns generated with the centroid_group function. The coords and group argu-
ments expect the names of columns in DT which correspond to the X and Y coordinates and group
columns. The return_rank argument controls if the rank of each individual’s distance to the group
centroid is also returned. The ties.method argument is passed to data.table::frank, see details
at ?data.table::frank.

Value

distance_to_centroid returns the input DT appended with a distance_centroid column indi-
cating the distance to group centroid and, optionally, a rank_distance_centroid column indicat-
ing the within group rank distance to group centroid (if return_rank = TRUE).

A message is returned when distance_centroid and optional rank_distance_centroid columns
already exist in the input DT, because they will be overwritten.

References

See examples of using distance to group centroid:

• https://doi.org/10.1016/j.anbehav.2021.08.004

• https://doi.org/10.1111/eth.12336

• https://doi.org/10.1007/s13364-018-0400-2

See Also

centroid_group, group_pts

Other Distance functions: direction_to_centroid(), distance_to_leader()

Examples

Load data.table
library(data.table)

Read example data

https://doi.org/10.1016/j.anbehav.2021.08.004
https://doi.org/10.1111/eth.12336
https://doi.org/10.1007/s13364-018-0400-2

24 distance_to_leader

DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'), group = 'group', na.rm = TRUE)

Calculate distance to group centroid
distance_to_centroid(

DT,
coords = c('X', 'Y'),
group = 'group',
return_rank = TRUE

)

distance_to_leader Distance to group leader

Description

distance_to_leader calculates the distance to the leader of each spatiotemporal group. The func-
tion accepts a data.table with relocation data appended with a rank_position_group_direction
column indicating the ranked position along the group direction generated with leader_direction_group(return_rank
= TRUE). Relocation data should be in planar coordinates provided in two columns representing the
X and Y coordinates.

Usage

distance_to_leader(DT = NULL, coords = NULL, group = "group")

Arguments

DT input data.table with ’rank_position_group_direction’ column generated by leader_direction_group
and group column generated by group_pts

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

group group column name, generated by group_pts, default ’group’

distance_to_leader 25

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

This function expects a rank_position_group_direction column generated with leader_direction_group(return_rank
= TRUE), a group column generated with the group_pts function. The coords and group argu-
ments expect the names of columns in DT which correspond to the X and Y coordinates and group
columns.

Value

distance_to_leader returns the input DT appended with a distance_leader column indicating
the distance to the group leader.

A message is returned when the distance_leader column is already exist in the input DT because
it will be overwritten.

References

See examples of using distance to leader and position within group:

• https://doi.org/10.1111/jfb.15315

• https://doi.org/10.1098/rspb.2017.2629

• https://doi.org/10.1016/j.anbehav.2023.09.009

See Also

direction_to_leader, leader_direction_group, group_pts

Other Distance functions: direction_to_centroid(), distance_to_centroid()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

(Subset example data to reduce example run time)
DT <- DT[year(datetime) == 2016]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

https://doi.org/10.1111/jfb.15315
https://doi.org/10.1098/rspb.2017.2629
https://doi.org/10.1016/j.anbehav.2023.09.009

26 DT

Calculate direction at each step
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'))

Calculate group direction
direction_group(DT)

Calculate leader in terms of position along group direction
leader_direction_group(

DT,
coords = c('X', 'Y'),
return_rank = TRUE

)

Calculate distance to leader
distance_to_leader(DT, coords = c('X', 'Y'))

DT Movement of 10 "Newfoundland Bog Cows"

Description

A dataset containing the GPS relocations of 10 individuals in winter 2016-2017.

Format

A data.table with 14297 rows and 5 variables:

ID individual identifier
X X coordinate of the relocation (UTM 36N)
Y Y coordinate of the relocation (UTM 36N)
datetime character string representing the date time
population sub population within the individuals

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

dyad_id 27

dyad_id Dyad ID

Description

Generate a dyad ID for edge list generated by edge_nn or edge_dist.

Usage

dyad_id(DT = NULL, id1 = NULL, id2 = NULL)

Arguments

DT input data.table with columns id1 and id2, as generated by edge_dist or edge_nn

id1 ID1 column name generated by edge_dist or edge_nn

id2 ID2 column name generated by edge_dist or edge_nn

Details

An undirected edge identifier between, for example individuals A and B will be A-B (and reverse
B and A will be A-B). Internally sorts and pastes id columns.

More details in the edge and dyad vignette (in progress).

Value

dyad_id returns the input data.table with appended "dyadID" column

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),

28 edge_delay

timegroup = 'timegroup',
returnDist = TRUE,
fillNA = TRUE

)

Generate dyad IDs
dyad_id(edges, 'ID1', 'ID2')

edge_delay Directional correlation delay based edge lists

Description

edge_delay returns edge lists defined by the directional correlation delay between individuals.
The function expects a distance based edge list generated by edge_dist or edge_nn, a data.table
with relocation data, individual identifiers and a window argument. The window argument is used to
specify the temporal window within which to measure the directional correlation delay. Relocation
data should be in two columns representing the X and Y coordinates.

Usage

edge_delay(edges, DT, window = NULL, id = NULL, direction = "direction")

Arguments

edges edge list generated generated by edge_dist or edge_nn, with fusionID column
generated by fusion_id

DT input data.table with timegroup column generated with group_times matching
the input data.table used to generate the edge list with edge_nn or edge_dist

window temporal window in unit of timegroup column generated with group_times, eg.
window = 4 corresponds to the 4 timegroups before and after the focal observa-
tion

id character string of ID column name

direction character string of direction column name, default "direction"

Details

The edges and DT must be data.tables. If your data is a data.frame, you can convert it by
reference using data.table::setDT.

The edges argument expects a distance based edge list generated with edge_nn or edge_dist. The
DT argument expects relocation data with a timegroup column generated with group_times.

The rows in edges and DT are internally matched in edge_delay using the columns timegroup
(from group_times) and ID1 and ID2 (in edges, from dyad_id) with id (in DT). This function ex-
pects a fusionID present, generated with the fusion_id function, and a dyadID present, generated
with the dyad_id function. The id, and direction arguments expect the names of a column in DT
which correspond to the id, and direction columns.

edge_delay 29

Value

edge_delay returns the input edges appended with a ’dir_corr_delay’ column indicating the tem-
poral delay (in units of timegroups) at which ID1’s direction of movement is most similar to ID2’s
direction of movement, within the temporal window defined. For example, if focal individual ’A’
moves in a 45 degree direction at time 2 and individual ’B’ moves in a most similar direction within
the window at time 5, the directional correlation delay between A and B is 3. Positive values of
directional correlation delay indicate a directed leadership edge from ID1 to ID2.

References

The directional correlation delay is defined in Nagy et al. 2010 (https://doi.org/10.1038/
nature08891).

See examples of measuring the directional correlation delay:

• https://doi.org/10.1016/j.anbehav.2013.07.005

• https://doi.org/10.1073/pnas.1305552110

• https://doi.org/10.1111/jfb.15315

• https://doi.org/10.1371/journal.pcbi.1003446

See Also

Other Edge-list generation: edge_dist(), edge_nn()

Other Direction functions: direction_group(), direction_polarization(), direction_step(),
direction_to_leader()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Select only individuals A, B, C for this example
DT <- DT[ID %in% c('A', 'B', 'C')]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Calculate direction
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

https://doi.org/10.1038/nature08891
https://doi.org/10.1038/nature08891
https://doi.org/10.1016/j.anbehav.2013.07.005
https://doi.org/10.1073/pnas.1305552110
https://doi.org/10.1111/jfb.15315
https://doi.org/10.1371/journal.pcbi.1003446

30 edge_dist

)

Distance based edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = FALSE

)

Generate dyad id
dyad_id(edges, id1 = 'ID1', id2 = 'ID2')

Generate fusion id
fusion_id(edges, threshold = 100)

Directional correlation delay
delay <- edge_delay(

edges = edges,
DT = DT,
window = 3,
id = 'ID'

)

delay[, mean(dir_corr_delay, na.rm = TRUE), by = .(ID1, ID2)][V1 > 0]

edge_dist Distance based edge lists

Description

edge_dist returns edge lists defined by a spatial distance within the user defined threshold. The
function expects a data.table with relocation data, individual identifiers and a threshold argument.
The threshold argument is used to specify the criteria for distance between points which defines a
group. Relocation data should be in two columns representing the X and Y coordinates.

Usage

edge_dist(
DT = NULL,
threshold,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL,
returnDist = FALSE,

edge_dist 31

fillNA = TRUE
)

Arguments

DT input data.table

threshold distance for grouping points, in the units of the coordinates

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

returnDist boolean indicating if the distance between individuals should be returned. If
FALSE (default), only ID1, ID2 columns (and timegroup, splitBy columns if
provided) are returned. If TRUE, another column "distance" is returned indicat-
ing the distance between ID1 and ID2.

fillNA boolean indicating if NAs should be returned for individuals that were not within
the threshold distance of any other. If TRUE, NAs are returned. If FALSE, only
edges between individuals within the threshold distance are returned.

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords timegroup (and optional splitBy) arguments expect the names of a column in
DT which correspond to the individual identifier, X and Y coordinates, timegroup (generated by
group_times) and additional grouping columns.

If provided, the threshold must be provided in the units of the coordinates and must be larger than
0. If the threshold is NULL, the distance to all other individuals will be returned. The coordinates
must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold = 50 would indicate a
50m distance threshold.

The timegroup argument is required to define the temporal groups within which edges are cal-
culated. The intended framework is to group rows temporally with group_times then spatially
with edge_dist. If you have already calculated temporal groups without group_times, you can
pass this column to the timegroup argument. Note that the expectation is that each individual will
be observed only once per timegroup. Caution that accidentally including huge numbers of rows
within timegroups can overload your machine since all pairwise distances are calculated within each
timegroup.

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. edge_dist will only consider rows within each splitBy subgroup.

32 edge_nn

Value

edge_dist returns a data.table with columns ID1, ID2, timegroup (if supplied) and any columns
provided in splitBy. If ’returnDist’ is TRUE, column ’distance’ is returned indicating the distance
between ID1 and ID2.

The ID1 and ID2 columns represent the edges defined by the spatial (and temporal with group_times)
thresholds.

See Also

Other Edge-list generation: edge_delay(), edge_nn()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = TRUE

)

edge_nn Nearest neighbour based edge lists

Description

edge_nn returns edge lists defined by the nearest neighbour. The function expects a data.table
with relocation data, individual identifiers and a threshold argument. The threshold argument is
used to specify the criteria for distance between points which defines a group. Relocation data
should be in two columns representing the X and Y coordinates.

edge_nn 33

Usage

edge_nn(
DT = NULL,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL,
threshold = NULL,
returnDist = FALSE

)

Arguments

DT input data.table

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

threshold (optional) spatial distance threshold to set maximum distance between an indi-
vidual and their neighbour.

returnDist boolean indicating if the distance between individuals should be returned. If
FALSE (default), only ID, NN columns (and timegroup, splitBy columns if pro-
vided) are returned. If TRUE, another column "distance" is returned indicating
the distance between ID and NN.

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The id, coords, timegroup (and optional splitBy) arguments expect the names of a column in
DT which correspond to the individual identifier, X and Y coordinates, timegroup (generated by
group_times) and additional grouping columns.

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50m distance threshold.

The timegroup argument is required to define the temporal groups within which edge nearest neigh-
bours are calculated. The intended framework is to group rows temporally with group_times then
spatially with edge_nn. If you have already calculated temporal groups without group_times, you
can pass this column to the timegroup argument. Note that the expectation is that each individ-
ual will be observed only once per timegroup. Caution that accidentally including huge numbers
of rows within timegroups can overload your machine since all pairwise distances are calculated
within each timegroup.

34 edge_nn

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. edge_nn will only consider rows within each splitBy subgroup.

Value

edge_nn returns a data.table with three columns: timegroup, ID and NN. If ’returnDist’ is TRUE,
column ’distance’ is returned indicating the distance between ID and NN.

The ID and NN columns represent the edges defined by the nearest neighbours (and temporal thresh-
olds with group_times).

If an individual was alone in a timegroup or splitBy, or did not have any neighbours within the
threshold distance, they are assigned NA for nearest neighbour.

See Also

Other Edge-list generation: edge_delay(), edge_dist()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Select only individuals A, B, C for this example
DT <- DT[ID %in% c('A', 'B', 'C')]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_nn(DT, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup')

Edge list generation using maximum distance threshold
edges <- edge_nn(DT, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup', threshold = 100)

Edge list generation, returning distance between nearest neighbours
edge_nn(DT, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup', threshold = 100,
returnDist = TRUE)

fusion_id 35

fusion_id Fission-fusion events

Description

fusion_id identifies fusion events in distance based edge lists. The function accepts a distance
based edge list generated by edge_dist, a threshold argument and arguments controlling how fu-
sion events are defined.

Usage

fusion_id(
edges = NULL,
threshold = 50,
n_min_length = 0,
n_max_missing = 0,
allow_split = FALSE

)

Arguments

edges distance based edge list generated by edge_dist function, with dyad ID gener-
ated by dyad_ID

threshold spatial distance threshold in the units of the projection

n_min_length minimum length of fusion events

n_max_missing maximum number of missing observations within a fusion event

allow_split boolean defining if a single observation can be greater than the threshold dis-
tance without initiating fission event

Details

The edges must be a data.table returned by the edge_dist function. In addition, fusion_id
requires a dyad ID set on the edge list generated by dyad_id. If your data is a data.frame, you
can convert it by reference using data.table::setDT.

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50 m distance threshold.

The n_min_length argument defines the minimum number of successive fixes that are required
to establish a fusion event. The n_max_missing argument defines the the maximum number of
allowable missing observations for the dyad within a fusion event. The allow_split argument
defines if a single observation can be greater than the threshold distance without initiating fission
event.

36 fusion_id

Value

fusion_id returns the input edges appended with a fusionID column.

This column represents the fusion event id. As with spatsoc’s grouping functions, the actual
value of fusionID is arbitrary and represents the identity of a given fusion event. If the data was
reordered, the fusionID may change, but the membership of each fusion event would not.

A message is returned when a column named fusionID already exists in the input edges, because
it will be overwritten.

References

See examples of identifying fission-fusion events with spatiotemporal data:

• https://doi.org/10.1111/ele.12457

• https://doi.org/10.1016/j.anbehav.2018.03.014

• https://doi.org/10.1890/08-0345.1

See Also

edge_dist

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Edge list generation
edges <- edge_dist(

DT,
threshold = 100,
id = 'ID',
coords = c('X', 'Y'),
timegroup = 'timegroup',
returnDist = TRUE,
fillNA = TRUE

)

dyad_id(edges, 'ID1', 'ID2')

fusion_id(
edges = edges,

https://doi.org/10.1111/ele.12457
https://doi.org/10.1016/j.anbehav.2018.03.014
https://doi.org/10.1890/08-0345.1

get_gbi 37

threshold = 100,
n_min_length = 1,
n_max_missing = 0,
allow_split = FALSE
)

get_gbi Generate group by individual matrix

Description

get_gbi generates a group by individual matrix. The function expects a data.table with indi-
vidual identifiers and a group column. The group by individual matrix can then be used to build a
network using asnipe::get_network.

Usage

get_gbi(DT = NULL, group = "group", id = NULL)

Arguments

DT input data.table

group Character string of group column (generated from one of spatsoc’s spatial group-
ing functions)

id character string of ID column name

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The group argument expects the name of a column which corresponds to an integer group identifier
(generated by spatsoc’s grouping functions).

The id argument expects the name of a column which corresponds to the individual identifier.

Value

get_gbi returns a group by individual matrix (columns represent individuals and rows represent
groups).

Note that get_gbi is identical in function for turning the outputs of spatsoc into social networks
as asnipe::get_group_by_individual but is more efficient thanks to data.table::dcast.

See Also

group_pts group_lines group_polys

Other Social network tools: randomizations()

38 group_lines

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]
DT[, yr := year(datetime)]

EPSG code for example data
utm <- 'EPSG:32736'

group_polys(DT, area = FALSE, hrType = 'mcp',
hrParams = list(percent = 95),
projection = utm, id = 'ID', coords = c('X', 'Y'),
splitBy = 'yr')

gbiMtrx <- get_gbi(DT = DT, group = 'group', id = 'ID')

group_lines Group Lines

Description

group_lines groups rows into spatial groups by generating LINESTRINGs and grouping based
on spatial intersection. The function expects a data.table with relocation data, individual iden-
tifiers and a distance threshold. The relocation data is transformed into sf LINESTRINGs using
build_lines and intersecting LINESTRINGs are grouped. The threshold argument is used to specify
the distance criteria for grouping. Relocation data should be in two columns representing the X and
Y coordinates.

Usage

group_lines(
DT = NULL,
threshold = NULL,
projection = NULL,
id = NULL,
coords = NULL,
timegroup = NULL,
sortBy = NULL,
splitBy = NULL,
sfLines = NULL

)

group_lines 39

Arguments

DT input data.table

threshold The width of the buffer around the lines in the units of the projection. Use
threshold = 0 to compare intersection without buffering.

projection numeric or character defining the coordinate reference system to be passed to
sf::st_crs. For example, either projection = "EPSG:32736" or projection =
32736.

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

sortBy Character string of date time column(s) to sort rows by. Must be a POSIXct.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

sfLines Alternatively to providing a DT, provide a simple feature LINESTRING ob-
ject generated with the sf package. The id argument is required to provide the
identifier matching each LINESTRING. If an sfLines object is provided, groups
cannot be calculated by timegroup or splitBy.

Details

R-spatial evolution:
Please note, spatsoc has followed updates from R spatial, GDAL and PROJ for handling projec-
tions, see more at https://r-spatial.org/r/2020/03/17/wkt.html.
In addition, group_lines (and build_lines) previously used sp::SpatialLines, rgeos::gIntersects,
rgeos::gBuffer but have been updated to use sf::st_as_sf, sf::st_linestring, sf::st_intersects, and
sf::st_buffer according to the R-spatial evolution, see more at https://r-spatial.org/r/2022/
04/12/evolution.html.

Notes on arguments:
The DT must be a data.table. If your data is a data.frame, you can convert it by reference
using data.table::setDT.
The id, coords, sortBy (and optional timegroup and splitBy) arguments expect the names
of respective columns in DT which correspond to the individual identifier, X and Y coordinates,
sorting, timegroup (generated by group_times) and additional grouping columns.
The projection argument expects a numeric or character defining the coordinate reference sys-
tem. For example, for UTM zone 36N (EPSG 32736), the projection argument is either projection
= 'EPSG:32736' or projection = 32736. See details in sf::st_crs() and https://spatialreference.
org for a list of EPSG codes.
The sortBy argument is used to order the input DT when creating sf LINESTRINGs. It must a
column in the input DT of type POSIXct to ensure the rows are sorted by date time.
The threshold must be provided in the units of the coordinates. The threshold can be equal to
0 if strict overlap is intended, otherwise it should be some value greater than 0. The coordinates
must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold = 50 would indicate a
50m distance threshold.

https://r-spatial.org/r/2020/03/17/wkt.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://spatialreference.org
https://spatialreference.org

40 group_lines

The timegroup argument is optional, but recommended to pair with group_times. The intended
framework is to group rows temporally with group_times then spatially with group_lines (or
group_pts, group_polys). With group_lines, pick a relevant group_times threshold such as '1
day' or '7 days' which is informed by your study species, system or question.
The splitBy argument offers further control building LINESTRINGs. If in your input DT, you
have multiple temporal groups (e.g.: years) for example, you can provide the name of the column
which identifies them and build LINESTRINGs for each individual in each year. The grouping
performed by group_lines will only consider rows within each splitBy subgroup.

Value

group_lines returns the input DT appended with a "group" column.

This column represents the spatial (and if timegroup was provided - spatiotemporal) group cal-
culated by intersecting lines. As with the other grouping functions, the actual value of group is
arbitrary and represents the identity of a given group where 1 or more individuals are assigned to a
group. If the data was reordered, the group may change, but the contents of each group would not.

A message is returned when a column named "group" already exists in the input DT, because it will
be overwritten.

See Also

build_lines group_times

Other Spatial grouping: group_polys(), group_pts()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Subset only individuals A, B, and C
DT <- DT[ID %in% c('A', 'B', 'C')]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- 32736

group_lines(DT, threshold = 50, projection = utm, sortBy = 'datetime',
id = 'ID', coords = c('X', 'Y'))

Daily movement tracks
Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '1 day')

Subset only first 50 days

group_polys 41

DT <- DT[timegroup < 25]

Spatial grouping
group_lines(DT, threshold = 50, projection = utm,

id = 'ID', coords = c('X', 'Y'),
timegroup = 'timegroup', sortBy = 'datetime')

Daily movement tracks by population
group_lines(DT, threshold = 50, projection = utm,

id = 'ID', coords = c('X', 'Y'),
timegroup = 'timegroup', sortBy = 'datetime',
splitBy = 'population')

group_polys Group Polygons

Description

group_polys groups rows into spatial groups by overlapping polygons (home ranges). The func-
tion expects a data.table with relocation data, individual identifiers and an area argument. The
relocation data is transformed into home range POLYGONs using build_polys() with adehabi-
tatHR::mcp or adehabitatHR::kernelUD. If the area argument is FALSE, group_polys returns group-
ing calculated by spatial overlap. If the area argument is TRUE, group_polys returns the area area
and proportion of overlap. Relocation data should be in two columns representing the X and Y
coordinates.

Usage

group_polys(
DT = NULL,
area = NULL,
hrType = NULL,
hrParams = NULL,
projection = NULL,
id = NULL,
coords = NULL,
splitBy = NULL,
sfPolys = NULL

)

Arguments

DT input data.table

area boolean indicating either overlap group (when FALSE) or area and proportion of
overlap (when TRUE)

hrType type of HR estimation, either ’mcp’ or ’kernel’

hrParams a named list of parameters for adehabitatHR functions

42 group_polys

projection numeric or character defining the coordinate reference system to be passed to
sf::st_crs. For example, either projection = "EPSG:32736" or projection =
32736.

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

sfPolys Alternatively, provide solely a simple features object with POLYGONs or MUL-
TIPOLYGONs. If sfPolys are provided, id is required and splitBy cannot be
used.

Details

R-spatial evolution:
Please note, spatsoc has followed updates from R spatial, GDAL and PROJ for handling projec-
tions, see more below and details at https://r-spatial.org/r/2020/03/17/wkt.html.
In addition, group_polys previously used rgeos::gIntersection, rgeos::gIntersects and rgeos::gArea
but has been updated to use sf::st_intersects, sf::st_intersection and sf::st_area according to the R-
spatial evolution, see more at https://r-spatial.org/r/2022/04/12/evolution.html.

Notes on arguments:
The DT must be a data.table. If your data is a data.frame, you can convert it by reference
using data.table::setDT().
The id, coords (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, X and Y coordinates, and additional grouping
columns.
The projection argument expects a character string or numeric defining the coordinate refer-
ence system to be passed to sf::st_crs. For example, for UTM zone 36S (EPSG 32736), the
projection argument is projection = "EPSG:32736" or projection = 32736. See https://
spatialreference.org for a list of EPSG codes.
The hrType must be either one of "kernel" or "mcp". The hrParams must be a named list of
arguments matching those of adehabitatHR::kernelUD() or adehabitatHR::mcp().
The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. The grouping performed by group_polys will only consider rows
within each splitBy subgroup.

Value

When area is FALSE, group_polys returns the input DT appended with a group column. As with
the other grouping functions, the actual value of group is arbitrary and represents the identity of
a given group where 1 or more individuals are assigned to a group. If the data was reordered, the
group may change, but the contents of each group would not. When area is TRUE, group_polys
returns a proportional area overlap data.table. In this case, ID refers to the focal individual of
which the total area is compared against the overlapping area of ID2.

https://r-spatial.org/r/2020/03/17/wkt.html
https://r-spatial.org/r/2022/04/12/evolution.html
https://spatialreference.org
https://spatialreference.org

group_pts 43

If area is FALSE, a message is returned when a column named group already exists in the input DT,
because it will be overwritten.

Along with changes to follow the R-spatial evolution, group_polys also now returns area and
proportion of overlap with units explicitly specified through the units package.

See Also

build_polys() group_times()

Other Spatial grouping: group_lines(), group_pts()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

EPSG code for example data
utm <- 32736

group_polys(DT, area = FALSE, hrType = 'mcp',
hrParams = list(percent = 95), projection = utm,
id = 'ID', coords = c('X', 'Y'))

areaDT <- group_polys(DT, area = TRUE, hrType = 'mcp',
hrParams = list(percent = 95), projection = utm,
id = 'ID', coords = c('X', 'Y'))

print(areaDT)

group_pts Group Points

Description

group_pts groups rows into spatial groups. The function expects a data.table with relocation
data, individual identifiers and a threshold argument. The threshold argument is used to specify
the criteria for distance between points which defines a group. Relocation data should be in two
columns representing the X and Y coordinates.

44 group_pts

Usage

group_pts(
DT = NULL,
threshold = NULL,
id = NULL,
coords = NULL,
timegroup,
splitBy = NULL

)

Arguments

DT input data.table

threshold distance for grouping points, in the units of the coordinates

id character string of ID column name

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

timegroup timegroup field in the DT within which the grouping will be calculated

splitBy (optional) character string or vector of grouping column name(s) upon which
the grouping will be calculated

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The id, coords, timegroup (and optional splitBy) arguments expect the names of a column in DT
which correspond to the individual identifier, X and Y coordinates, timegroup (typically generated
by group_times) and additional grouping columns.

The threshold must be provided in the units of the coordinates. The threshold must be larger
than 0. The coordinates must be planar coordinates (e.g.: UTM). In the case of UTM, a threshold
= 50 would indicate a 50m distance threshold.

The timegroup argument is required to define the temporal groups within which spatial groups are
calculated. The intended framework is to group rows temporally with group_times then spatially
with group_pts (or group_lines, group_polys). If you have already calculated temporal groups
without group_times, you can pass this column to the timegroup argument. Note that the expec-
tation is that each individual will be observed only once per timegroup. Caution that accidentally
including huge numbers of rows within timegroups can overload your machine since all pairwise
distances are calculated within each timegroup.

The splitBy argument offers further control over grouping. If within your DT, you have multiple
populations, subgroups or other distinct parts, you can provide the name of the column which
identifies them to splitBy. The grouping performed by group_pts will only consider rows within
each splitBy subgroup.

group_times 45

Value

group_pts returns the input DT appended with a group column.

This column represents the spatialtemporal group. As with the other grouping functions, the actual
value of group is arbitrary and represents the identity of a given group where 1 or more individuals
are assigned to a group. If the data was reordered, the group may change, but the contents of each
group would not.

A message is returned when a column named group already exists in the input DT, because it will
be overwritten.

See Also

group_times

Other Spatial grouping: group_lines(), group_polys()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Select only individuals A, B, C for this example
DT <- DT[ID %in% c('A', 'B', 'C')]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Spatial grouping with timegroup and splitBy on population
group_pts(DT, threshold = 5, id = 'ID', coords = c('X', 'Y'),

timegroup = 'timegroup', splitBy = 'population')

group_times Group Times

Description

group_times groups rows into time groups. The function expects date time formatted data and a
threshold argument. The threshold argument is used to specify a time window within which rows
are grouped.

46 group_times

Usage

group_times(DT = NULL, datetime = NULL, threshold = NULL)

Arguments

DT input data.table

datetime name of date time column(s). either 1 POSIXct or 2 IDate and ITime. e.g.:
’datetime’ or c(’idate’, ’itime’)

threshold threshold for grouping times. e.g.: ’2 hours’, ’10 minutes’, etc. if not provided,
times will be matched exactly. Note that provided threshold must be in the
expected format: ’## unit’

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

The datetime argument expects the name of a column in DT which is of type POSIXct or the name
of two columns in DT which are of type IDate and ITime.

threshold must be provided in units of minutes, hours or days. The character string should start
with an integer followed by a unit, separated by a space. It is interpreted in terms of 24 hours which
poses the following limitations:

• minutes, hours and days cannot be fractional

• minutes must divide evenly into 60

• minutes must not exceed 60

• minutes, hours which are nearer to the next day, are grouped as such

• hours must divide evenly into 24

• multi-day blocks should divide into the range of days, else the blocks may not be the same
length

In addition, the threshold is considered a fixed window throughout the time series and the rows
are grouped to the nearest interval.

If threshold is NULL, rows are grouped using the datetime column directly.

Value

group_times returns the input DT appended with a timegroup column and additional temporal
grouping columns to help investigate, troubleshoot and interpret the timegroup.

The actual value of timegroup is arbitrary and represents the identity of a given timegroup which
1 or more individuals are assigned to. If the data was reordered, the group may change, but the
contents of each group would not.

The temporal grouping columns added depend on the threshold provided:

• threshold with unit minutes: "minutes" column added identifying the nearest minute group
for each row.

leader_direction_group 47

• threshold with unit hours: "hours" column added identifying the nearest hour group for each
row.

• threshold with unit days: "block" columns added identifying the multiday block for each
row.

A message is returned when any of these columns already exist in the input DT, because they will
be overwritten.

See Also

group_pts group_lines group_polys

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

group_times(DT, datetime = 'datetime', threshold = '5 minutes')

group_times(DT, datetime = 'datetime', threshold = '2 hours')

group_times(DT, datetime = 'datetime', threshold = '10 days')

leader_direction_group

Leadership along group direction

Description

Given the mean direction of a group of animals, leader_direction_group shifts the coordinate
system to a new origin at the group centroid and rotates the coordinate system by the mean direction
to return each individual’s position along the mean direction, representing leadership in terms of the
front-back position in each group’s mean direction.

Usage

leader_direction_group(
DT = NULL,
group_direction = "group_direction",
coords = NULL,

48 leader_direction_group

group = "group",
return_rank = FALSE,
ties.method = "average"

)

Arguments

DT input data.table with group direction columns generated by direction_group
and centroid columns generated by centroid_group

group_direction

group_direction column name generated using direction_group, default ’group_direction’
coords character vector of X coordinate and Y coordinate column names. Note: the

order is assumed X followed by Y column names.
group group column name, generated by group_pts, default ’group’
return_rank boolean if rank distance should also be returned, default FALSE
ties.method see ?data.table::frank

Details

The function accepts a data.table with relocation data appended with a group_direction col-
umn from direction_group and group centroid columns from centroid_group. Relocation data
should be in two columns representing the X and Y coordinates.

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT or by reassigning using data.table::data.table.

The group_direction argument expects the names of columns in DT which correspond to the mean
group direction generated by direction_group. The mean group direction column is expected in
units of radians. The coords arguments expects the names of columns in DT which correspond to the
X and Y coordinate columns. The return_rank argument controls if the rank of each individual’s
distance to the group centroid is also returned. If return_rank is TRUE, the group argument is
required to specify the group column generated by group_pts. The ties.method argument is
passed to data.table::frank, see details at ?data.table::frank.

Value

leader_direction_group returns the input DT appended with a position_group_direction col-
umn indicating the position along the group direction in the units of the projection and, option-
ally when return_rank = TRUE, a rank_position_group_direction column indicating the the
ranked position along the group direction.

A message is returned when position_group_direction or rank_position_group_direction
columns already exist in the input DT, because they will be overwritten.

References

See examples of measuring leadership along group direction (also called forefront index):

• https://doi.org/10.1371/journal.pone.0036567

• https://doi.org/10.1111/jfb.15315

• https://doi.org/10.1098/rspb.2021.0839

https://doi.org/10.1371/journal.pone.0036567
https://doi.org/10.1111/jfb.15315
https://doi.org/10.1098/rspb.2021.0839

randomizations 49

See Also

direction_group, centroid_group

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

(Subset example data to reduce example run time)
DT <- DT[year(datetime) == 2016]

Cast the character column to POSIXct
DT[, datetime := as.POSIXct(datetime, tz = 'UTC')]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '20 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 50, id = 'ID',

coords = c('X', 'Y'), timegroup = 'timegroup')

Calculate direction at each step
direction_step(

DT = DT,
id = 'ID',
coords = c('X', 'Y'),
projection = 32736

)

Calculate group centroid
centroid_group(DT, coords = c('X', 'Y'))

Calculate group direction
direction_group(DT)

Calculate leader in terms of position along group direction
leader_direction_group(DT, coords = c('X', 'Y'))

randomizations Data-stream randomizations

Description

randomizations performs data-stream social network randomization. The function expects a
data.table with relocation data, individual identifiers and a randomization type. The data.table
is randomized either using step or daily between-individual methods, or within-individual daily
trajectory method described by Spiegel et al. (2016).

50 randomizations

Usage

randomizations(
DT = NULL,
type = NULL,
id = NULL,
group = NULL,
coords = NULL,
datetime = NULL,
splitBy = NULL,
iterations = NULL

)

Arguments

DT input data.table

type one of ’daily’, ’step’ or ’trajectory’ - see details

id character string of ID column name

group generated from spatial grouping functions - see details

coords character vector of X coordinate and Y coordinate column names. Note: the
order is assumed X followed by Y column names.

datetime field used for providing date time or time group - see details

splitBy List of fields in DT to split the randomization process by

iterations The number of iterations to randomize

Details

The DT must be a data.table. If your data is a data.frame, you can convert it by reference using
data.table::setDT.

Three randomization types are provided:

1. step - randomizes identities of relocations between individuals within each time step.

2. daily - randomizes identities of relocations between individuals within each day.

3. trajectory - randomizes daily trajectories within individuals (Spiegel et al. 2016).

Depending on the type, the datetime must be a certain format:

• step - datetime is integer group created by group_times

• daily - datetime is POSIXct format

• trajectory - datetime is POSIXct format

The id, datetime, (and optional splitBy) arguments expect the names of respective columns in
DT which correspond to the individual identifier, date time, and additional grouping columns. The
coords argument is only required when the type is "trajectory", since the coordinates are required
for recalculating spatial groups with group_pts, group_lines or group_polys.

Please note that if the data extends over multiple years, a column indicating the year should be
provided to the splitBy argument. This will ensure randomizations only occur within each year.

randomizations 51

The group argument is expected only when type is ’step’ or ’daily’.

For example, using data.table::year:

DT[, yr := year(datetime)] randomizations(DT, type = 'step',
id = 'ID', datetime = 'timegroup', splitBy = 'yr')

iterations is set to 1 if not provided. Take caution with a large value for iterations with large
input DT.

Value

randomizations returns the random date time or random id along with the original DT, depending
on the randomization type. The length of the returned data.table is the original number of rows
multiplied by the number of iterations + 1. For example, 3 iterations will return 4x - one observed
and three randomized.

Two columns are always returned:

• observed - if the rows represent the observed (TRUE/FALSE)

• iteration - iteration of rows (where 0 is the observed)

In addition, depending on the randomization type, random ID or random date time columns are
returned:

• step - randomID each time step

• daily - randomID for each day and jul indicating julian day

• trajectory - a random date time ("random" prefixed to datetime argument), observed jul and
randomJul indicating the random day relocations are swapped to.

References

doi:10.1111/2041-210X.12553

See Also

Other Social network tools: get_gbi()

Examples

Load data.table
library(data.table)

Read example data
DT <- fread(system.file("extdata", "DT.csv", package = "spatsoc"))

Select only individuals A, B, C for this example
DT <- DT[ID %in% c('A', 'B', 'C')]

Date time columns

doi:10.1111/2041-210X.12553

52 randomizations

DT[, datetime := as.POSIXct(datetime)]
DT[, yr := year(datetime)]

Temporal grouping
group_times(DT, datetime = 'datetime', threshold = '5 minutes')

Spatial grouping with timegroup
group_pts(DT, threshold = 5, id = 'ID', coords = c('X', 'Y'), timegroup = 'timegroup')

Randomization: step
randStep <- randomizations(

DT,
type = 'step',
id = 'ID',
group = 'group',
datetime = 'timegroup',
splitBy = 'yr',
iterations = 2

)

Randomization: daily
randDaily <- randomizations(

DT,
type = 'daily',
id = 'ID',
group = 'group',
datetime = 'datetime',
splitBy = 'yr',
iterations = 2

)

Randomization: trajectory
randTraj <- randomizations(

DT,
type = 'trajectory',
id = 'ID',
group = NULL,
coords = c('X', 'Y'),
datetime = 'datetime',
splitBy = 'yr',
iterations = 2

)

Index

∗ Build functions
build_lines, 2
build_polys, 4

∗ Centroid functions
centroid_dyad, 6
centroid_fusion, 9
centroid_group, 11

∗ Direction functions
direction_group, 13
direction_polarization, 15
direction_step, 16
direction_to_leader, 20
edge_delay, 28

∗ Distance functions
direction_to_centroid, 19
distance_to_centroid, 22
distance_to_leader, 24

∗ Edge-list generation
edge_delay, 28
edge_dist, 30
edge_nn, 32

∗ Leadership functions
leader_direction_group, 47

∗ Social network tools
get_gbi, 37
randomizations, 49

∗ Spatial grouping
group_lines, 38
group_polys, 41
group_pts, 43

∗ Temporal grouping
group_times, 45

?data.table::frank, 23, 48

adehabitatHR::getverticeshr, 5
adehabitatHR::kernelUD, 4, 5, 41
adehabitatHR::kernelUD(), 42
adehabitatHR::mcp, 4, 5, 41
adehabitatHR::mcp(), 42
amt::direction_abs(), 18

asnipe::get_group_by_individual, 37
asnipe::get_network, 37

build_lines, 2, 6, 38–40
build_polys, 4, 4
build_polys(), 41, 43

centroid_dyad, 6, 10, 12
centroid_fusion, 8, 9, 12
centroid_group, 8, 10, 11, 19, 23, 49
CircStats::circ.mean(), 14
CircStats::r.test(), 15, 16

data.table::data.table, 7, 9, 11, 14, 15,
17, 19, 21, 23, 25, 44, 48

data.table::dcast, 37
data.table::setDT, 5, 7, 9, 11, 14, 15, 17,

19, 21, 23, 25, 28, 31, 33, 35, 37, 39,
44, 46, 48, 50

data.table::setDT(), 42
data.table::year, 51
diff_rad, 12
direction_group, 13, 16, 18, 21, 29, 49
direction_polarization, 14, 15, 18, 21, 29
direction_step, 14, 16, 16, 21, 29
direction_to_centroid, 19, 23, 25
direction_to_leader, 14, 16, 18, 20, 25, 29
distance_to_centroid, 19, 22, 25
distance_to_leader, 19, 21, 23, 24
DT, 26
dyad_id, 8, 27

edge_delay, 14, 16, 18, 21, 28, 32, 34
edge_dist, 8, 10, 27, 29, 30, 34, 36
edge_nn, 8, 27, 29, 32, 32

fusion_id, 10, 35

geosphere::bearing(), 18
get_gbi, 37, 51
group_lines, 4, 37, 38, 40, 43–45, 47

53

54 INDEX

group_polys, 5, 6, 37, 40, 41, 44, 45, 47
group_pts, 8, 10, 12, 14, 16, 19, 21, 23, 25,

37, 40, 43, 43, 47
group_times, 31, 33, 39, 40, 44, 45, 45
group_times(), 43

leader_direction_group, 21, 25, 47

randomizations, 37, 49

sf::st_area, 42
sf::st_as_sf, 3, 5, 39
sf::st_buffer, 39
sf::st_crs, 3, 5, 17, 39, 42
sf::st_crs(), 3, 39
sf::st_intersection, 42
sf::st_intersects, 39, 42
sf::st_linestring, 3, 39
sp::SpatialLines, 3, 39
sp::SpatialPoints, 5
spatsoc, 37

	build_lines
	build_polys
	centroid_dyad
	centroid_fusion
	centroid_group
	diff_rad
	direction_group
	direction_polarization
	direction_step
	direction_to_centroid
	direction_to_leader
	distance_to_centroid
	distance_to_leader
	DT
	dyad_id
	edge_delay
	edge_dist
	edge_nn
	fusion_id
	get_gbi
	group_lines
	group_polys
	group_pts
	group_times
	leader_direction_group
	randomizations
	Index

