
Package: ssh (via r-universe)
November 27, 2024

Type Package

Title Secure Shell (SSH) Client for R

Version 0.9.3

Description Connect to a remote server over SSH to transfer files via
SCP, setup a secure tunnel, or run a command or script on the
host while streaming stdout and stderr directly to the client.

License MIT + file LICENSE

Encoding UTF-8

SystemRequirements libssh >= 0.6.0 (the original, not libssh2)

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

Imports credentials, askpass

Suggests knitr, rmarkdown, spelling, sys, testthat, mongolite

Language en-GB

URL https://docs.ropensci.org/ssh/ https://ropensci.r-universe.dev/ssh

BugReports https://github.com/ropensci/ssh/issues

VignetteBuilder knitr

Config/pak/sysreqs libssh-dev libssh2-1-dev libssl-dev

Repository https://ropensci.r-universe.dev

RemoteUrl https://github.com/ropensci/ssh

RemoteRef master

RemoteSha dc9c1b7ef5406c238ec97032d93bdfb9ad4c3a29

Contents
scp . 2
ssh_connect . 3
ssh_exec . 4
ssh_tunnel . 5

Index 6

1

https://docs.ropensci.org/ssh/
https://ropensci.r-universe.dev/ssh
https://github.com/ropensci/ssh/issues

2 scp

scp SCP (Secure Copy)

Description

Upload and download files to/from the SSH server via the scp protocol. Directories in the files
argument are automatically traversed and uploaded / downloaded recursively.

Usage

scp_download(session, files, to = ".", verbose = TRUE)

scp_upload(session, files, to = ".", verbose = TRUE)

Arguments

session ssh connection created with ssh_connect()

files path to files or directory to transfer

to existing directory on the destination where files will be copied into

verbose print progress while copying files

Details

Note that the syntax is slightly different from the scp command line tool because the to parameter
is always a target directory where all files will be copied into. If to does not exist, it will be
created.

The files parameter in scp_upload() is vectorised hence all files and directories will be recur-
sively uploaded into the to directory. For scp_download() the files parameter must be a single
string which may contain wildcards.

The default path to = "." means that files get downloaded to the current working directory and
uploaded to the user home directory on the server.

See Also

Other ssh: ssh_connect(), ssh_credentials, ssh_exec, ssh_tunnel()

Examples

Not run:
recursively upload files and directories
session <- ssh_connect("dev.opencpu.org")
files <- c(R.home("doc"), R.home("COPYING"))
scp_upload(session, files, to = "~/target")

download it back
scp_download(session, "~/target/*", to = tempdir())

ssh_connect 3

delete it from the server
ssh_exec_wait(session, command = "rm -Rf ~/target")
ssh_disconnect(session)

End(Not run)

ssh_connect SSH Client

Description

Create an ssh session using ssh_connect(). The session can be used to execute commands, scp
files or setup a tunnel.

Usage

ssh_connect(host, keyfile = NULL, passwd = askpass, verbose = FALSE)

ssh_session_info(session)

ssh_disconnect(session)

libssh_version()

Arguments

host an ssh server string of the form [user@]hostname[:@port]. An ipv6 hostname
should be wrapped in brackets like this: [2001:db8::1]:80.

keyfile path to private key file. Must be in OpenSSH format (see details)

passwd either a string or a callback function for password prompt

verbose either TRUE/FALSE or a value between 0 and 4 indicating log level: 0: no
logging, 1: only warnings, 2: protocol, 3: packets or 4: full stack trace.

session ssh connection created with ssh_connect()

Details

The client first tries to authenticate using a private key, either from ssh-agent or /.ssh/id_rsa in
the user home directory. If this fails it falls back on challenge-response (interactive) and password
auth if allowed by the server. The passwd parameter can be used to provide a passphrase or a
callback function to ask prompt the user for the passphrase when needed.

The session will automatically be disconnected when the session object is removed or when R exits
but you can also use ssh_disconnect().

Windows users: the private key must be in OpenSSH PEM format. If you open it in a text editor
the first line must be: -----BEGIN RSA PRIVATE KEY-----. To convert a Putty PKK key, open it
in the PuttyGen utility and go to Conversions -> Export OpenSSH.

4 ssh_exec

See Also

Other ssh: scp, ssh_credentials, ssh_exec, ssh_tunnel()

Examples

Not run:
session <- ssh_connect("dev.opencpu.org")
ssh_exec_wait(session, command = "whoami")
ssh_disconnect(session)

End(Not run)

ssh_exec Execute Remote Command

Description

Run a command or script on the host while streaming stdout and stderr directly to the client.

Usage

ssh_exec_wait(
session,
command = "whoami",
std_out = stdout(),
std_err = stderr()

)

ssh_exec_internal(session, command = "whoami", error = TRUE)

Arguments

session ssh connection created with ssh_connect()

command The command or script to execute

std_out callback function, filename, or connection object to handle stdout stream

std_err callback function, filename, or connection object to handle stderr stream

error automatically raise an error if the exit status is non-zero

Details

The ssh_exec_wait() function is the remote equivalent of the local sys::exec_wait(). It runs a
command or script on the ssh server and streams stdout and stderr to the client to a file or connection.
When done it returns the exit status for the remotely executed command.

Similarly ssh_exec_internal() is a small wrapper analogous to sys::exec_internal(). It
buffers all stdout and stderr output into a raw vector and returns it in a list along with the exit
status. By default this function raises an error if the remote command was unsuccessful.

ssh_tunnel 5

See Also

Other ssh: scp, ssh_connect(), ssh_credentials, ssh_tunnel()

Examples

Not run:
session <- ssh_connect("dev.opencpu.org")
ssh_exec_wait(session, command = c(

'curl -O https://cran.r-project.org/src/contrib/jsonlite_1.5.tar.gz',
'R CMD check jsonlite_1.5.tar.gz',
'rm -f jsonlite_1.5.tar.gz'

))
ssh_disconnect(session)
End(Not run)

ssh_tunnel Create SSH tunnel

Description

Opens a port on your machine and tunnel all traffic to a custom target host via the SSH server, for
example to connect with a database server behind a firewall.

Usage

ssh_tunnel(session, port = 5555, target = "rainmaker.wunderground.com:23")

Arguments

session ssh connection created with ssh_connect()

port integer of local port on which to listen for incoming connections

target string with target host and port to connect to via ssh tunnel

Details

This function blocks while the tunnel is active. Use the tunnel by connecting to localhost:5555
from a separate process. Each tunnel can only be used once and will automatically be closed when
the client disconnects. It is intended to tunnel a single connection, not as a long running proxy
server.

See Also

Other ssh: scp, ssh_connect(), ssh_credentials, ssh_exec

Index

∗ ssh
scp, 2
ssh_connect, 3
ssh_exec, 4
ssh_tunnel, 5

libssh_version (ssh_connect), 3

scp, 2, 4, 5
scp_download (scp), 2
scp_download(), 2
scp_upload (scp), 2
scp_upload(), 2
ssh (ssh_connect), 3
ssh_connect, 2, 3, 5
ssh_connect(), 2–5
ssh_credentials, 2, 4, 5
ssh_disconnect (ssh_connect), 3
ssh_disconnect(), 3
ssh_exec, 2, 4, 4, 5
ssh_exec_internal (ssh_exec), 4
ssh_exec_internal(), 4
ssh_exec_wait (ssh_exec), 4
ssh_exec_wait(), 4
ssh_info (ssh_connect), 3
ssh_session_info (ssh_connect), 3
ssh_tunnel, 2, 4, 5, 5
sys::exec_internal(), 4
sys::exec_wait(), 4

6

	scp
	ssh_connect
	ssh_exec
	ssh_tunnel
	Index

