Package: dfms 1.0.0

dfms: Dynamic Factor Models
Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data and mixed-frequency nowcasting applications. Factors follow a stationary VAR process of order p. Estimation options include: running the Kalman Filter and Smoother once with PCA initial values (2S) as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012>; iterated Kalman Filtering and Smoothing until EM convergence as in Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225>; or the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary missing-data patterns and monthly-quarterly mixed-frequency datasets. The implementation uses the 'Armadillo' 'C++' library and the 'collapse' package for fast estimation. A comprehensive set of methods supports interpretation and visualization, forecasting, and decomposition of the 'news' content of macroeconomic data releases following Banbura and Modugno (2014). Information criteria to choose the number of factors are also provided, following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.
Authors:
dfms_1.0.0.tar.gz
dfms_1.0.0.zip(r-4.6)dfms_1.0.0.zip(r-4.5)dfms_1.0.0.zip(r-4.4)
dfms_1.0.0.tgz(r-4.6-x86_64)dfms_1.0.0.tgz(r-4.6-arm64)dfms_1.0.0.tgz(r-4.5-x86_64)dfms_1.0.0.tgz(r-4.5-arm64)
dfms_1.0.0.tar.gz(r-4.6-arm64)dfms_1.0.0.tar.gz(r-4.6-x86_64)dfms_1.0.0.tar.gz(r-4.5-arm64)dfms_1.0.0.tar.gz(r-4.5-x86_64)
dfms_1.0.0.tgz(r-4.5-emscripten)
dfms.pdf |dfms.html✨
dfms/json (API)
NEWS
| # Install 'dfms' in R: |
| install.packages('dfms', repos = c('https://ropensci.r-universe.dev', 'https://cloud.r-project.org')) |
Reviews:rOpenSci Software Review #556
Bug tracker:https://github.com/ropensci/dfms/issues
Pkgdown/docs site:https://docs.ropensci.org
- BM14_M - Euro Area Macroeconomic Data from Banbura and Modugno 2014
- BM14_Models - Euro Area Macroeconomic Data from Banbura and Modugno 2014
- BM14_Q - Euro Area Macroeconomic Data from Banbura and Modugno 2014
dynamic-factor-modelstime-seriesopenblascpp
Last updated from:ba1af5a03d (on main). Checks:11 NOTE, 3 OK. Indexed: yes.
| Target | Result | Total time | Artifact |
|---|---|---|---|
| linux-devel-arm64 | NOTE | 190 | |
| linux-devel-x86_64 | NOTE | 203 | |
| pkgdown docs | OK | 306 | |
| source / vignettes | OK | 308 | |
| linux-release-arm64 | NOTE | 154 | |
| linux-release-x86_64 | NOTE | 158 | |
| macos-devel-arm64 | NOTE | 170 | |
| macos-devel-x86_64 | NOTE | 230 | |
| macos-release-arm64 | NOTE | 177 | |
| macos-release-x86_64 | NOTE | 259 | |
| windows-devel | NOTE | 245 | |
| windows-release | NOTE | 142 | |
| windows-oldrel | NOTE | 192 | |
| wasm-release | OK | 112 |
Exports:.VARainvapinvDFMem_convergedFISICrnewsSKFSKFStsnarmimp
Dependencies:collapseRcppRcppArmadillo
