Package: pangoling 1.0.3

pangoling: Access to Large Language Model Predictions
Provides access to word predictability estimates using large language models (LLMs) based on 'transformer' architectures via integration with the 'Hugging Face' ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., 'GPT-2') and masked/bidirectional LLMs (e.g., 'BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).
Authors:
pangoling_1.0.3.tar.gz
pangoling_1.0.3.zip(r-4.6)pangoling_1.0.3.zip(r-4.5)pangoling_1.0.3.zip(r-4.4)
pangoling_1.0.3.tgz(r-4.5-any)pangoling_1.0.3.tgz(r-4.4-any)
pangoling_1.0.3.tar.gz(r-4.6-any)pangoling_1.0.3.tar.gz(r-4.5-any)
pangoling_1.0.3.tgz(r-4.4-emscripten)
pangoling.pdf |pangoling.html✨
pangoling/json (API)
NEWS
# Install 'pangoling' in R: |
install.packages('pangoling', repos = c('https://packages.ropensci.org', 'https://cloud.r-project.org')) |
Reviews:rOpenSci Software Review #575
Bug tracker:https://github.com/ropensci/pangoling/issues
Pkgdown site:https://docs.ropensci.org
- df_jaeger14 - Self-Paced Reading Dataset on Chinese Relative Clauses
- df_sent - Example dataset: Two word-by-word sentences
nlppsycholinguisticstransformers
Last updated 2 months agofrom:7e6f2cf9dc (on main). Checks:8 OK, 2 NOTE. Indexed: yes.
Target | Result | Total time |
---|---|---|
source / vignettes | OK | 302 |
pkgdown docs | OK | 267 |
linux-devel-x86_64 | OK | 275 |
linux-release-x86_64 | OK | 375 |
macos-release-arm64 | OK | 102 |
macos-oldrel-arm64 | NOTE | 119 |
windows-devel | OK | 203 |
windows-release | OK | 320 |
windows-oldrel | NOTE | 208 |
wasm-release | OK | 199 |
Exports:causal_configcausal_lpcausal_lp_matscausal_next_tokens_pred_tblcausal_next_tokens_tblcausal_pred_matscausal_preloadcausal_targets_predcausal_tokens_lp_tblcausal_tokens_pred_lstcausal_words_predinstall_py_pangolinginstalled_py_pangolingmasked_configmasked_lpmasked_preloadmasked_targets_predmasked_tokens_pred_tblmasked_tokens_tblntokensperplexity_calcset_cache_foldertokenize_lsttransformer_vocab
Dependencies:cachemclidata.tablefastmapglueherejsonlitelatticelifecyclemagrittrMatrixmemoisepillarpngrappdirsRcppRcppTOMLreticulaterlangrprojrootrstudioapitidyselecttidytableutf8vctrswithr
Troubleshooting the use of Python in R
Rendered fromtroubleshooting.Rmd
usingknitr::rmarkdown
on May 29 2025.Last update: 2025-03-11
Started: 2025-03-11
Using a Bert model to get the predictability of words in their context
Rendered fromintro-bert.Rmd
usingknitr::rmarkdown
on May 29 2025.Last update: 2025-03-11
Started: 2025-03-11
Using a GPT2 transformer model to get word predictability
Rendered fromintro-gpt2.Rmd
usingknitr::rmarkdown
on May 29 2025.Last update: 2025-03-11
Started: 2025-03-11
Worked-out example: Surprisal from a causal (GPT) model as a cognitive processing bottleneck in reading
Rendered fromexample.Rmd
usingknitr::rmarkdown
on May 29 2025.Last update: 2025-03-11
Started: 2025-03-11