sits | sits-package sits |
Samples of classes Cerrado and Pasture | cerrado_2classes |
histogram of prob cubes | hist.probs_cube |
histogram of data cubes | hist.raster_cube |
Histogram | hist.sits |
Histogram uncertainty cubes | hist.uncertainty_cube |
Replace NA values by linear interpolation | impute_linear |
Plot time series and data cubes | plot plot.sits |
Plot classified images | plot.class_cube |
Plot Segments | plot.class_vector_cube |
Plot DEM cubes | plot.dem_cube |
Make a kernel density plot of samples distances. | plot.geo_distances |
Plot patterns that describe classes | plot.patterns |
Plot time series predictions | plot.predicted |
Plot probability cubes | plot.probs_cube |
Plot probability vector cubes | plot.probs_vector_cube |
Plot RGB data cubes | plot.raster_cube |
Plot Random Forest model | plot.rfor_model |
Plot SAR data cubes | plot.sar_cube |
Plot confusion matrix | plot.sits_accuracy |
Plot a dendrogram cluster | plot.sits_cluster |
Plot SOM samples evaluated | plot.som_clean_samples |
Plot confusion between clusters | plot.som_evaluate_cluster |
Plot a SOM map | plot.som_map |
Plot Torch (deep learning) model | plot.torch_model |
Plot uncertainty cubes | plot.uncertainty_cube |
Plot uncertainty vector cubes | plot.uncertainty_vector_cube |
Plot variance cubes | plot.variance_cube |
Plot RGB vector data cubes | plot.vector_cube |
Plot XGB model | plot.xgb_model |
A time series sample with data from 2000 to 2016 | point_mt_6bands |
Samples of Amazon tropical forest biome for deforestation analysis | samples_l8_rondonia_2bands |
Samples of nine classes for the state of Mato Grosso | samples_modis_ndvi |
Assess classification accuracy | sits_accuracy sits_accuracy.class_cube sits_accuracy.class_vector_cube sits_accuracy.default sits_accuracy.derived_cube sits_accuracy.raster_cube sits_accuracy.sits sits_accuracy.tbl_df |
Add base maps to a time series data cube | sits_add_base_cube |
Apply a function on a set of time series | sits_apply sits_apply.default sits_apply.derived_cube sits_apply.raster_cube sits_apply.sits |
Return a sits_tibble or raster_cube as an sf object. | sits_as_sf sits_as_sf.default sits_as_sf.raster_cube sits_as_sf.sits sits_as_sf.vector_cube |
Convert a data cube into a stars object | sits_as_stars |
Convert a data cube into a Spatial Raster object from terra | sits_as_terra sits_as_terra.class_cube sits_as_terra.probs_cube sits_as_terra.raster_cube sits_as_terra.uncertainty_cube sits_as_terra.variance_cube |
Get the names of the bands | sits_bands sits_bands.default sits_bands.patterns sits_bands.raster_cube sits_bands.sits sits_bands.sits_model sits_bands<- sits_bands<-.default sits_bands<-.raster_cube sits_bands<-.sits |
Get the bounding box of the data | sits_bbox sits_bbox.default sits_bbox.raster_cube sits_bbox.sits sits_bbox.tbl_df |
Classify time series or data cubes | sits_classify sits_classify.default sits_classify.derived_cube sits_classify.tbl_df |
Classify a regular raster cube | sits_classify.raster_cube |
Classify a segmented data cube | sits_classify.segs_cube sits_classify.vector_cube |
Classify a set of time series | sits_classify.sits |
Cleans a classified map using a local window | sits_clean sits_clean.class_cube sits_clean.default sits_clean.derived_cube sits_clean.raster_cube |
Removes labels that are minority in each cluster. | sits_cluster_clean |
Find clusters in time series samples | sits_cluster_dendro |
Show label frequency in each cluster produced by dendrogram analysis | sits_cluster_frequency |
Function to retrieve sits color table | sits_colors |
Function to save color table as QML style for data cube | sits_colors_qgis |
Function to reset sits color table | sits_colors_reset |
Function to set sits color table | sits_colors_set |
Function to show colors in SITS | sits_colors_show |
Estimate ensemble prediction based on list of probs cubes | sits_combine_predictions sits_combine_predictions.average sits_combine_predictions.default sits_combine_predictions.uncertainty |
Suggest high confidence samples to increase the training set. | sits_confidence_sampling |
Configure parameters for sits package | sits_config |
Show current sits configuration | sits_config_show |
Create a user configuration file. | sits_config_user_file |
Create data cubes from image collections | sits_cube |
Copy the images of a cube to a local directory | sits_cube_copy |
Create sits cubes from cubes in flat files in a local | sits_cube.local_cube |
Create a results cube from local files | sits_cube.results_cube |
Create data cubes from image collections accessible by STAC | sits_cube.stac_cube |
Create a vector cube from local files | sits_cube.vector_cube |
Create a closure for calling functions with and without data | sits_factory_function |
Filter time series with smoothing filter | sits_filter |
Define a linear formula for classification models | sits_formula_linear |
Define a loglinear formula for classification models | sits_formula_logref |
Compute the minimum distances among samples and prediction points. | sits_geo_dist |
Get values from classified maps | sits_get_class sits_get_class.csv sits_get_class.data.frame sits_get_class.default sits_get_class.sf sits_get_class.shp sits_get_class.sits |
Get time series from data cubes and cloud services | sits_get_data sits_get_data.default |
Get time series using CSV files | sits_get_data.csv |
Get time series using sits objects | sits_get_data.data.frame |
Get time series using sf objects | sits_get_data.sf |
Get time series using shapefiles | sits_get_data.shp |
Get time series using sits objects | sits_get_data.sits |
Get values from probability maps | sits_get_probs sits_get_probs.csv sits_get_probs.data.frame sits_get_probs.default sits_get_probs.sf sits_get_probs.shp sits_get_probs.sits |
Replace NA values in time series with imputation function | sits_impute |
Cross-validate time series samples | sits_kfold_validate |
Build a labelled image from a probability cube | sits_label_classification sits_label_classification.default sits_label_classification.derived_cube sits_label_classification.probs_cube sits_label_classification.probs_vector_cube sits_label_classification.raster_cube |
Get labels associated to a data set | sits_labels sits_labels.default sits_labels.derived_cube sits_labels.derived_vector_cube sits_labels.patterns sits_labels.raster_cube sits_labels.sits sits_labels.sits_model |
Inform label distribution of a set of time series | sits_labels_summary sits_labels_summary.sits |
Change the labels of a set of time series | sits_labels<- |
Change the labels of a set of time series | sits_labels<-.class_cube |
Change the labels of a set of time series | sits_labels<-.default |
Change the labels of a set of time series | sits_labels<-.probs_cube |
Change the labels of a set of time series | sits_labels<-.sits |
Train light gradient boosting model | sits_lightgbm |
Train a model using Lightweight Temporal Self-Attention Encoder | sits_lighttae |
List the cloud collections supported by sits | sits_list_collections |
Train a Long Short Term Memory Fully Convolutional Network | sits_lstm_fcn |
Merge two data sets (time series or cubes) | sits_merge sits_merge.default sits_merge.raster_cube sits_merge.sits |
Convert MGRS tile information to ROI in WGS84 | sits_mgrs_to_roi |
Multiple endmember spectral mixture analysis | sits_mixture_model sits_mixture_model.default sits_mixture_model.derived_cube sits_mixture_model.raster_cube sits_mixture_model.sits sits_mixture_model.tbl_df |
Train multi-layer perceptron models using torch | sits_mlp |
Export classification models | sits_model_export sits_model_export.sits_model |
Mosaic classified cubes | sits_mosaic |
Find temporal patterns associated to a set of time series | sits_patterns |
Obtain numerical values of predictors for time series samples | sits_pred_features |
Normalize predictor values | sits_pred_normalize |
Obtain categorical id and predictor labels for time series samples | sits_pred_references |
Obtain a fraction of the predictors data frame | sits_pred_sample |
Obtain predictors for time series samples | sits_predictors |
Reclassify a classified cube | sits_reclassify sits_reclassify.class_cube sits_reclassify.default |
Reduces a cube or samples from a summarization function | sits_reduce sits_reduce.raster_cube sits_reduce.sits |
Reduce imbalance in a set of samples | sits_reduce_imbalance |
Build a regular data cube from an irregular one | sits_regularize sits_regularize.combined_cube sits_regularize.default sits_regularize.dem_cube sits_regularize.derived_cube sits_regularize.ogh_cube sits_regularize.rainfall_cube sits_regularize.raster_cube sits_regularize.sar_cube |
Train ResNet classification models | sits_resnet |
Train random forest models | sits_rfor |
Given a ROI, find MGRS tiles intersecting it. | sits_roi_to_mgrs |
Find tiles of a given ROI and Grid System | sits_roi_to_tiles |
Informs if sits examples should run | sits_run_examples |
Informs if sits tests should run | sits_run_tests |
Sample a percentage of a time series | sits_sample |
Allocation of sample size to strata | sits_sampling_design |
Segment an image | sits_segment |
Filter a data set (tibble or cube) for bands, tiles, and dates | sits_select sits_select.default sits_select.raster_cube sits_select.sits |
Filter time series with Savitzky-Golay filter | sits_sgolay |
Segment an image using SLIC | sits_slic |
Smooth probability cubes with spatial predictors | sits_smooth sits_smooth.default sits_smooth.derived_cube sits_smooth.probs_cube sits_smooth.probs_vector_cube sits_smooth.raster_cube |
Cleans the samples based on SOM map information | sits_som_clean_samples |
Evaluate cluster | sits_som_evaluate_cluster |
Build a SOM for quality analysis of time series samples | sits_som_map |
Evaluate cluster | sits_som_remove_samples |
Obtain statistics for all sample bands | sits_stats |
Allocation of sample size to strata | sits_stratified_sampling |
Train support vector machine models | sits_svm |
Train a model using Temporal Self-Attention Encoder | sits_tae |
Train temporal convolutional neural network models | sits_tempcnn |
Apply a set of texture measures on a data cube. | sits_texture sits_texture.default sits_texture.derived_cube sits_texture.raster_cube |
Convert MGRS tile information to ROI in WGS84 | sits_tiles_to_roi |
Get timeline of a cube or a set of time series | sits_timeline sits_timeline.default sits_timeline.derived_cube sits_timeline.raster_cube sits_timeline.sits sits_timeline.sits_model sits_timeline.tbl_df |
Export a a full sits tibble to the CSV format | sits_timeseries_to_csv |
Export a sits tibble metadata to the CSV format | sits_to_csv sits_to_csv.default sits_to_csv.sits sits_to_csv.tbl_df |
Save accuracy assessments as Excel files | sits_to_xlsx sits_to_xlsx.list sits_to_xlsx.sits_accuracy |
Train classification models | sits_train |
Tuning machine learning models hyper-parameters | sits_tuning |
Tuning machine learning models hyper-parameters | sits_tuning_hparams |
Estimate classification uncertainty based on probs cube | sits_uncertainty sits_uncertainty.default sits_uncertainty.probs_cube sits_uncertainty.probs_vector_cube sits_uncertainty.raster_cube |
Suggest samples for enhancing classification accuracy | sits_uncertainty_sampling |
Validate time series samples | sits_validate |
Calculate the variance of a probability cube | sits_variance sits_variance.default sits_variance.derived_cube sits_variance.probs_cube sits_variance.raster_cube |
View data cubes and samples in leaflet | sits_view sits_view.class_cube sits_view.class_vector_cube sits_view.data.frame sits_view.default sits_view.probs_cube sits_view.raster_cube sits_view.sits sits_view.som_map sits_view.uncertainty_cube sits_view.vector_cube |
Filter time series with whittaker filter | sits_whittaker |
Train extreme gradient boosting models | sits_xgboost |
Summarize data cubes | summary.class_cube |
Summarize data cubes | summary.raster_cube |
Summarize sits | summary.sits |
Summarize accuracy matrix for training data | summary.sits_accuracy |
Summarize accuracy matrix for area data | summary.sits_area_accuracy |
Summarize variance cubes | summary.variance_cube |