Package: chopin 0.9.6

Insang Song

chopin: Spatial Parallel Computing by Hierarchical Data Partitioning

Geospatial data computation is parallelized by grid, hierarchy, or raster files. Based on 'future' (Bengtsson, 2024 <doi:10.32614/CRAN.package.future>) and 'mirai' (Gao et al., 2025 <doi:10.32614/CRAN.package.mirai>) parallel back-ends, 'terra' (Hijmans et al., 2025 <doi:10.32614/CRAN.package.terra>) and 'sf' (Pebesma et al., 2024 <doi:10.32614/CRAN.package.sf>) functions as well as convenience functions in the package can be distributed over multiple threads. The simplest way of parallelizing generic geospatial computation is to start from par_pad_*() functions to par_grid(), par_hierarchy(), or par_multirasters() functions. Virtually any functions accepting classes in 'terra' or 'sf' packages can be used in the three parallelization functions. A common raster-vector overlay operation is provided as a function extract_at(), which uses 'exactextractr' (Baston, 2023 <doi:10.32614/CRAN.package.exactextractr>), with options for kernel weights for summarizing raster values at vector geometries. Other convenience functions for vector-vector operations including simple areal interpolation (summarize_aw()) and summation of exponentially decaying weights (summarize_sedc()) are also provided.

Authors:Insang Song [aut, cre], Kyle Messier [aut, ctb], Alec L. Robitaille [rev], Eric R. Scott [rev]

chopin_0.9.6.tar.gz
chopin_0.9.6.zip(r-4.6)chopin_0.9.6.zip(r-4.5)chopin_0.9.6.zip(r-4.4)
chopin_0.9.6.tgz(r-4.5-any)chopin_0.9.6.tgz(r-4.4-any)
chopin_0.9.6.tar.gz(r-4.6-any)chopin_0.9.6.tar.gz(r-4.5-any)
chopin_0.9.6.tgz(r-4.5-emscripten)chopin_0.9.6.tgz(r-4.4-emscripten)
chopin.pdf |chopin.html
chopin/json (API)
NEWS

# Install 'chopin' in R:
install.packages('chopin', repos = c('https://packages.ropensci.org', 'https://cloud.r-project.org'))

Reviews:rOpenSci Software Review #638

Bug tracker:https://github.com/ropensci/chopin/issues

Pkgdown site:https://docs.ropensci.org

Datasets:
  • ncpoints - Mildly clustered points in North Carolina, United States
  • prediction_grid - Regular grid points in the mainland United States at 1km spatial resolution

On CRAN:

Conda:

7.52 score 25 stars 24 scripts 239 downloads 17 exports 52 dependencies

Last updated 8 days ago from:c308bea43c (on main). Checks:11 OK. Indexed: yes.

TargetResultTotal timeArtifact
linux-devel-x86_64OK291
pkgdown docsOK390
source / vignettesOK338
linux-release-x86_64OK289
macos-release-arm64OK148
macos-oldrel-arm64OK172
windows-develOK215
windows-releaseOK219
windows-oldrelOK274
wasm-releaseOK205
wasm-oldrelOK220

Exports:extract_atkernelfunctionpar_convert_fpar_gridpar_grid_miraipar_hierarchypar_hierarchy_miraipar_make_dggridpar_make_h3par_merge_gridpar_multirasterspar_multirasters_miraipar_pad_balancedpar_pad_gridpar_split_listsummarize_awsummarize_sedc

Dependencies:abindanticlustclassclassIntclicodetoolscollapsecpp11DBIdigestdplyre1071exactextractrfuturefuture.applygenericsgeometriesglobalsglueigraphKernSmoothlatticelifecyclelistenvlpSolvemagrittrMASSMatrixmirainanonextparallellypillarpkgconfigproxyR6RANNrasterRcpprlangs2sfsfheadersspstarsterratibbletidyselectunitsutf8vctrswithrwk

Extracting Weather/Climate Geospatial Data with chopin

Rendered fromv04_climate_examples.Rmdusingknitr::rmarkdownon Aug 12 2025.

Last update: 2025-02-13
Started: 2024-08-09

Generate computational grids

Rendered fromv03_par_pad_grid.Rmdusingknitr::rmarkdownon Aug 12 2025.

Last update: 2025-08-12
Started: 2024-08-09

Getting started with chopin

Rendered fromv01_start.Rmdusingknitr::rmarkdownon Aug 12 2025.

Last update: 2025-07-09
Started: 2024-08-09

Good practice of using chopin

Rendered fromv02_good_practice.Rmdusingknitr::rmarkdownon Aug 12 2025.

Last update: 2025-02-13
Started: 2024-08-09

targets and grid objects

Rendered fromv05_targets.Rmdusingknitr::rmarkdownon Aug 12 2025.

Last update: 2024-08-09
Started: 2024-08-09

Readme and manuals

Help Manual

Help pageTopics
Extract raster values with point buffers or polygonsextract_at extract_at,character,character-method extract_at,character,sf-method extract_at,character,SpatVector-method extract_at,SpatRaster,character-method extract_at,SpatRaster,sf-method extract_at,SpatRaster,SpatVector-method
Mildly clustered points in North Carolina, United Statesncpoints
Map specified arguments to others in literalspar_convert_f
Parallelize spatial computation over the computational gridspar_grid
Parallelize spatial computation over the computational gridspar_grid_mirai
Parallelize spatial computation by hierarchy in input datapar_hierarchy
Parallelize spatial computation by hierarchy in input datapar_hierarchy_mirai
Convert DGGRID indices to sf objectpar_make_dggrid
Convert H3 indices to sf objectpar_make_h3
Merge adjacent grid polygons with given rulespar_merge_grid
Parallelize spatial computation over multiple raster filespar_multirasters
Parallelize spatial computation over multiple raster filespar_multirasters_mirai
Extension of par_make_balanced for padded gridspar_pad_balanced
Get a set of computational gridspar_pad_grid
Split grid list to a nested list of row-wise data framespar_split_list
Regular grid points in the mainland United States at 1km spatial resolutionprediction_grid
Area weighted summary using two polygon objectssummarize_aw summarize_aw,character,character-method summarize_aw,sf,sf-method summarize_aw,SpatVector,SpatVector-method
Calculate Sum of Exponentially Decaying Contributions (SEDC) covariatessummarize_sedc